
Continuous Blue-Green Deployments With
Kubernetes
semaphoreci.com

Do you know what airplanes, rockets, submarines, and blue-green deployments have in com-
mon? They all go to great lengths to prevent failures. And they do that using redundancy.

We’ve talked before about the generalities of blue-green deployments in another post.
Today, I’d like to get into the gory details and see how we can create a CI/CD pipeline
that deploys a Kubernetes application using the blue-green methodology.

The gist of blue-green deployments is to have two identical environments, convention-
ally called blue and green, to do continuous, risk-free updates. This way, users access
one while the other receives updates.

Figure 1: Blue-green deployments at glance

1

https://semaphoreci.com/blog/blue-green-deployment

Why Kubernetes?

Blue and green take turns. On each cycle, we deploy new versions into the idle envi-
ronment, test them, and finally switch routes so all users can start using it. With this
method, we get three benefits:

• We test in a real production environment.
• Users don’t experience any downtime.
• We can rollback in an instant in case there is trouble.

Why Kubernetes?
The way wemanage the infrastructure around blue-green deployments depends on the
technology we’re running. If we’re using baremetal servers, one systemwill be idlemost
of the time. In practice, however, it’s a lot more common and cost-effective to provision
resources on-demand in the cloud using infrastructure as code (IaC). For instance, we can
start virtual machines and spin up containers, configure networks and services before
we start the deployment. Once users have been switched to the new version, the old
environment can be torn down.

Here is where Kubernetes enters the picture. Kubernetes is an orchestration platform
that’s perfect for blue-green deployments. We can, for instance, use the platform to
dynamically create the green environment, deploy the application, switch over the user’s
traffic, and finally delete the blue environment. Kubernetes lets us manage the whole
blue-green process using one tool.

If you are an absolute beginner in Kubernetes or if you’d like a refresher, grab a copy of
our free eBook CI/CD with Docker and Kubernetes. It is a great way to get started with
Docker and Kubernetes.

Blue-green Deployments with Kubernetes
Let’s see Kubernetes blue-green deployments in action. Imagine we have version v1 of
awesome application called myapp, and that is currently running in blue. In Kubernetes,
we run applications with deployments and pods.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

https://semaphoreci.com/resources/cicd-docker-kubernetes

Blue-green Deployments with Kubernetes

Figure 2: V1 deployment running in blue

Sometime later, we have the next version (v2) ready to go. So we create a brand-new
production environment called green. As it turns out, in Kubernetes we only have to
declare a new deployment, and the platform takes care of the rest. Users are not yet
aware of the change as the blue environment keeps on working unaffected. They won’t
see any change until we switch traffic over from blue to green.

Figure 3: A new deployment is created to run V2

It’s said that only developers that like to live dangerously test in production. But here

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

Blue-green Deployments with Kubernetes

we all have the chance to do that without risks. We can test green at leisure on the same
Kubernetes cluster where blue is running.

Figure 4: v2 is active on green, v1 is on stand-by on blue

Once we have moved the users from blue to green and happy with the result, we can
delete blue to free up resources.

Figure 5: blue deployment is gone

As you can imagine, blue-green deployments are complex. We have to grapple with two
deployments at once and manage the network. Fortunately, Kubernetes makes things

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

Getting Ready

a lot easier. Even so, we should strive to automate the release cycle as much as possible.
In this tutorial, I’m going to show you how to use Semaphore Continuous Integration (CI)
and Continuous Delivery (CD) to test and release any project.

Getting Ready
I’ll try to avoid going into cloud vendor-specific details. Technically, Kubernetes’ behav-
ior itself doesn’t depend on the provider, so this guide should work the same for any
application on Google Cloud, AWS, Azure, or any other cloud. However, the commands
used to connect to the Kubernetes cluster will change.

That being said, we’ll need to define some common ground. You’ll need:

• A Kubernetes cluster running with Istio. Istio is a service mesh that adds many
features to Kubernetes.

• A Docker registry to store the container images. We’ll use Docker Hub because it’s
the default. Most cloud providers also offer private registries that may be more
convenient for you.

• An application and its associated Dockerfile. We’ll use the semaphore-demo-cicd-
kubernetes demo project. You’re welcome to fork it and play with it.

• The kubectl CLI and your cluster’s kubeconfig (plus any other tools needed to man-
age it).

Preparing the Manifests

In Kubernetes, we use manifests to describe what we want and let the platform figure
out the rest.

I’ve split manifests into three parts:

• Gateway: the entry point for the application. Accepts HTTP requests.
• Routing: describes the routes that send requests to blue and green.
• Deployments: describes the pods that run the application. We’ll have a deploy-
ment for each color.

To get started, create a directory called manifests in the root of your project. Place
the files as shown in the next section. These manifests were designed to work with our
demo project, so you may need to adjust them for your use case.

manifests/
├── deployment.yml
├── gateway.yml
├── route-test.yml
├── route.yml
└── service.yml

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

https://semaphoreci.com/continuous-integration
https://semaphoreci.com/blog/cicd
https://istio.io/
https://hub.docker.com/
https://github.com/semaphoreci-demos/semaphore-demo-cicd-kubernetes
https://github.com/semaphoreci-demos/semaphore-demo-cicd-kubernetes
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Getting Ready

Once you are done editing the manifests, push them to the repo:

$ git add manifests/*
$ git commit -m "add Kubernetes manifests"
$ git push origin master

Istio Manifests

Istio is an open-source service-mesh platform designed to run on top of products such
as Kubernetes and Consul. This service is a popular choice for running microservice
applications because it facilitates communication and provides security. Comparedwith
native Kubernetes controllers, Istio’s service mesh gives us more control and flexibility.
We’ll rely on Istio for handling all network traffic.

Gateway

An Istio Ingress gateway is a resource that processes traffic entering the cluster. Istio
gateways describe a load balancer at the edge of the service mesh. We can use them to
encrypt connections and expose ports to the Internet.

The following gateway accepts HTTP (port 80) connections from all hosts.

manifests/gateway.yml

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
name: myapp-gateway

spec:
selector:

istio: ingressgateway
servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:
- "*"

Routing

Before going into the routing let me tell you the variable convention we’ll use from now
on:

• $COLOR_ACTIVE is the live, in-production deployment. We’ll route all user con-
nections into it by default. This environment runs the old/stable version.

• $COLOR_TEST is where we deploy the new version and where we run the tests.
It temporarily exists while we’re making a deployment.

When one variable is green, the other is blue and vice-versa.

We’ll need two Istio resources to route inbound traffic:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/

Getting Ready

• VirtualService: binds to the Istio gateway and uses rules to decide where to route
the requests.

• DestinationRule: maps VirtualService rules with deployments using labels.

Steady State Routes

The following manifest describes the controllers that send all traffic from the gateway
to the $COLOR_ACTIVE deployment:

manifests/route.yml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: myapp-blue-green

spec:
hosts:
- "*"
gateways:
- myapp-gateway
http:
- name: myapp-default

route:
- destination:

host: myapp
subset: $COLOR_ACTIVE

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
name: myapp-blue-green

spec:
host: myapp
subsets:
- name: $COLOR_ACTIVE

labels:
color: $COLOR_ACTIVE

Test Routes

During deployment things are different. We’ll need to split traffic in two. Wewant regular
users to maintain their access to the old version, running in $COLOR_ACTIVE. At the
same time, we’d like to have a special route for us to run some tests on the new version,
running in $COLOR_TEST, before making the switch. Istio has several routing options
to achieve this. For HTTP traffic, I find that the easiest one is to use a cookie.

The next manifest describes a VirtualService and DestinationRule that routes requests
with a cookie having test=true to $COLOR_TEST. The rest of the traffic, that
is, requests without the cookie, goes to $COLOR_ACTIVE. We’ll call this manifest

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/destination-rule/
https://istio.io/latest/docs/reference/config/networking/virtual-service/

Getting Ready

manifests/route-test.yml.

manifests/route-test.yml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: myapp-blue-green

spec:
hosts:
- "*"
gateways:
- myapp-gateway
http:
- name: myapp-test

match:
- headers:

cookie:
regex: "^(.*?;)?(test=true)(;.*)?$"

route:
- destination:

host: myapp
subset: $COLOR_TEST

- name: myapp-default
route:
- destination:

host: myapp
subset: $COLOR_ACTIVE

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
name: myapp-blue-green

spec:
host: myapp
subsets:
- name: blue

labels:
color: blue

- name: green
labels:

color: green

Kubernetes Manifests

The remainingmanifests describe native Kubernetes resources. They do not depend on
Istio. These are the last manifests that complete the Kubernetes setup.

Deployments & Service

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

Getting Ready

First, we’ll define a deployment, which creates the application’s pods. It includes a readi-
ness probe and some database connection variables.

manifests/deployment.yml

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-$COLOR_TEST
labels:

app: myapp
color: $COLOR_TEST

spec:
replicas: 1
selector:

matchLabels:
app: myapp
color: $COLOR_TEST

strategy:
type: Recreate

template:
metadata:

labels:
app: myapp
color: $COLOR_TEST

spec:
imagePullSecrets:
- name: dockerhub
containers:
- name: myapp
image: $DOCKER_USERNAME/myapp:$SEMAPHORE_WORKFLOW_ID
ports:
- containerPort: 3000
readinessProbe:
httpGet:

path: /ready
port: 3000

env:
- name: NODE_ENV

value: "production"
- name: DB_HOST

value: "$DB_HOST"
- name: DB_PORT

value: "$DB_PORT"
- name: DB_SCHEMA

value: "$DB_SCHEMA"
- name: DB_USER

value: "$DB_USER"
- name: DB_PASSWORD

value: "$DB_PASSWORD"

Second, you’ll need to store your docker registry credentials in the Kubernetes cluster.
To do this run the following command. You only have to do this once:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

https://semaphoreci.com/blog/kubernetes-deployment
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#define-a-liveness-http-request
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#define-a-liveness-http-request

Setting Up Your Continuous Integration Pipelines

$ kubectl create secret docker-registry dockerhub \
--docker-server=docker.io \
--docker-username=YOUR_DOCKER_HUB_USERNAME \
--docker-password=YOUR_DOCKER_HUB_PASSWORD

secret/dockerhub created

Finally, we’ll use a service to get a stable IP and hostname for the application. This service
targets the application pods labeled as app = myapp.

manifests/service.yml

apiVersion: v1
kind: Service
metadata:
name: myapp
labels:

app: myapp
spec:
selector:

app: myapp
ports:
- port: 3000

name: http

Setting Up Your Continuous Integration Pipelines
I will assume that you already have working continuous integration and delivery
pipelines configured in Semaphore, which should build and test your Docker images.
The only requirement is that, at some point, it pushes the image into the registry of
your choice.

If you need help setting up your pipelines, you can find detailed step-by-step instructions
in our free eBook CI/CD with Docker and Kubernetes. We also have detailed tutorials on
dockerizing applications:

• Dockerizing a Ruby on Rails Application
• Dockerizing a Node.js Web Application
• Dockerizing a Python Django Web Application
• Dockerizing a PHP Application
• Continuous Integration with Deno

How to Organize Releases
There are probably as many ways of making releases as there are developers, after all,
that’s our thing. But I think it’s a pretty safe bet that Git tags will be somehow involved.
So, let’s mark releases using color-coded Git tags.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

https://kubernetes.io/docs/concepts/services-networking/service/
https://semaphoreci.com/resources/cicd-docker-kubernetes
https://semaphoreci.com/community/tutorials/dockerizing-a-ruby-on-rails-application
https://semaphoreci.com/community/tutorials/dockerizing-a-node-js-web-application
https://semaphoreci.com/community/tutorials/dockerizing-a-python-django-web-application
https://semaphoreci.com/community/tutorials/dockerizing-a-php-application
https://semaphoreci.com/blog/continuous-integration-with-deno
https://git-scm.com/book/en/v2/Git-Basics-Tagging

How to Organize Releases

Step 1: Decide Which Pipeline Should Start

Suppose we want to deploy a new version of the application into green. The old version
is currently running on blue. The deployment starts once the continuous integration
pipeline is done building the docker image.

The first step is to decide which deployment pipeline to start: the green or the blue. As
I said, we’ll make the decision based on how the release was tagged. We’ll use a regular
expression to find if the tag contains either blue or green, and activate the appropriate
pipeline. If there are no tags, or they don’t match a color, nothing happens.

Imagine that we tagged our release as v2.0-green. Since it matches “green”, the
green deployment pipeline is activated.

Step 2: Deploy

The second step is to make the deployment. Here, we create the green pods with the
new version of the Docker image. Additionally, we create a test route in the VirtualSer-
vice.

Step 3: Test the Deployment

The main benefit of blue-green deployments is that we can test the application in a real
production setting. The third step is to run tests on the new deployment.

To run the tests, we make HTTP requests using a cookie. The test route sends them to
the green deployment.

Step 4: Go Live

If all tests pass, the fourth step is to change the default route, so all users access the new
version. We do this by updating the VirtualService default route.

Once we changed the default route to green, all users access the new deployment.
Meanwhile, the old version is still running, nothing has changed on blue, other than it
is no longer receiving any traffic.

Step 5: Cleanup or Rollback

At this point, the deployment is mostly complete. The only thing left is to do a cleanup.
We can either delete the old environment or rollback. This will be the only manual step
in the workflow. If for any reason, we are not satisfied with the new version, doing a
rollback is easy, we just need to change the VirtualService route back to the blue.

On the other hand, if the new version works perfectly, we can start the cleanup pipeline
that deletes the blue deployment. This step releases the computing resources back to
the cluster.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

Connecting Semaphore with Kubernetes

Deployment Flowchart

We can represent the sequence more visually using a flowchart.

Figure 6: deployment flowchart

Connecting Semaphore with Kubernetes
Semaphore needs access to the Kubernetes cluster to make the deployment. To do this,
follow these steps to create a secret:

• Click on the account badge on the top-right corner and enter the Settings section.

Figure 7: blue-green

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

https://docs.semaphoreci.com/essentials/using-secrets/

Connecting Semaphore with Kubernetes

• Click on Secrets, then New Secret.

Figure 8: secrets

• Create a secret called “kubeconfig”.
• Upload your kubeconfig or any other files needed to connect.

Figure 9: create a secret

The details depend on where the cluster is hosted; some cloud providers let you down-
load the kubeconfig directly. Others require additional steps like installing and running
dedicated CLIs. If you have any trouble setting this up, check out the links at the end of
this post, you’ll find examples with various providers.

Next, create two sets of environment variables for your application:

• Create a new secret called “env-blue”.
• Add all the environment variables the application needs, for instance, the database
connection parameters.

• Click on Save Changes.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

Connecting Semaphore with Kubernetes

Figure 10: create a secret 2

Repeat the steps to create the green secret.

Figure 11: create the green secret

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

Blue Pipelines

Blue Pipelines
It looks like we’re finally ready to start a deployment. We’ll do blue first.

To begin, open the Workflow Editor.

Figure 12: workflow editor

• Select the branch.
• Press Add First Promotion.

Figure 13: select the branch

• Change the name to “Deploy to Blue”.
• Check the Enable automatic promotion option.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

Blue Pipelines

Figure 14: deploy to blue

• Type the following conditions to follow releases tagged like v1.2.3-blue:
result = 'passed' AND tag =~ '^v.*-blue$'

Adding a Sanity Check

We’ll use the first block to do a sanity check. We have to make sure that we’re not de-
ploying the new version into a live environment, which would be disastrous. This could
happen if we Git-tagged the wrong color bymistake. The sanity check consists of retriev-
ing the VirtualService default route and verifying that IS NOT blue.

• Open the prologue section. Place here any commands that you need to connect
with your cluster.

• Open the environment variables section and create a variable named
COLOR_TEST = blue.

• Import the kubeconfig secret.
• Type the following command (sorry, it’s rather long):

if kubectl get virtualservice myapp-blue-green; then \
VSERVICE_DEFAULT=$(\

kubectl get virtualservice myapp-blue-green -o json | \
jq -r '.spec.http[-1].route[0].destination.subset'); \
echo "Default route goes to $VSERVICE_DEFAULT"; \
test "$VSERVICE_DEFAULT" != "$COLOR_TEST"; \

fi

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

Blue Pipelines

Figure 15: sanity check block

Adding a Deployment Block

Beyond this point, we can assume blue is not active and that it’s safe to deploy.

• Create a second block called “Deploy”.
• Import the kubeconfig, dockerhub and env-blue secrets.
• Configure the same prologue and environment variables as before.
• Type the following commands in the job, which creates the gateway, routes, service,
deployment:

checkout

service & deployment
kubectl apply -f manifests/service.yml
envsubst < manifests/deployment.yml | tee _deployment.yml
kubectl apply -f _deployment.yml
kubectl rollout status -f _deployment.yml --timeout=120s

routes & gateway
kubectl apply -f manifests/gateway.yml
envsubst < manifests/route-test.yml | tee _route.yml
kubectl apply -f _route.yml

place any other setup/initialization commands, for instance...
kubectl exec -it -c myapp \

$(kubectl get pod -l app=myapp,color=$COLOR_TEST -o name | head -n 1) \
-- npm run migrate

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

Blue Pipelines

Figure 16: deploy block

Adding Smoke Tests

• Create a third block called “Smoke Tests”.
• Repeat the prologue and environment variables from the last block.
• Import the kubeconfig secret.
• Add your test scripts. You can run them inside a running pod with kubectl
exec:

kubectl exec -it -c myapp \
$(kubectl get pod -l app=myapp,color=$COLOR_TEST -o name | head -n 1) \
-- npm run ping

• Youmay addmore test jobs. As an example, the following command uses curl and
a cookie to access blue directly:

export INGRESS_HOST=$(\
kubectl -n istio-system get service istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}' \
)

export INGRESS_PORT=$(\
kubectl -n istio-system get service istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="http2")].port}' \
)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

Blue Pipelines

export URL="http://${INGRESS_HOST}:${INGRESS_PORT}"
echo "Ingress gateway is $URL"
export TEST_VALUE=$(curl --cookie 'test=true' $URL/ready | jq -r '.ready')
test "$TEST_VALUE" = "true"

Figure 17: smoke tests block

Activating the Blue Route

The only thing left is to change the route.

• Create a new promotion called “Activate Blue”

Figure 18: activate blue promotion

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

Cleanup Pipelines

• Set the COLOR_ACTIVE variable to blue.
• Configure the prologue commands exactly as you did earlier.
• Import the kubeconfig secret.
• Type the following commands in the job:

checkout
envsubst < manifests/route.yml | tee _route.yml
kubectl apply -f _route.yml

Figure 19: activate blue route block

Cleanup Pipelines
At this point in the workflow, either the upgrade was a success and everything went
smoothly, or we’re not satisfied and wish to go back.

Decommission Pipeline

The decommission pipeline deletes the green deployment to free cluster resources:

• Create a new promotion: “Decommission Green”
• Add the prologue and kubectl secret.
• Set the environment variable COLOR_DECOMISSION = green.
• Type the following commands in the job:

if kubectl get deployment/myapp-$COLOR_DECOMISSION 2>/dev/null; then \
kubectl delete deployment/myapp-$COLOR_DECOMISSION; \

fi

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

Cleanup Pipelines

Figure 20: decomission promotion

Figure 21: decomission block

Rollback Pipeline

Activating the rollback pipeline is like pressing CTRL+Z; it routes all traffic back to green,
effectively undoing the upgrade.

• Create a new promotion: “Rollback to Green”
• Add the prologue and kubectl secret.
• Set the environment variable COLOR_ACTIVE = green.
• Type the following commands in the job:

checkout
envsubst < manifests/route.yml | tee _route.yml
kubectl apply -f _route.yml

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

Green Pipelines

Figure 22: rollback promotion

Figure 23: rollback block

Congratulations! Your blue pipelines are ready.

Green Pipelines
We’re halfway done. Nowwe have to do everything again for green, but in reverse–that’s
“Deploy to Green”, “Activate Green”, “Decommission Blue” and “Rollback to Blue”.

Go back to the first pipeline in theworkflow and create a second promotion for the green
branch. Keep in mind the following:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

Deploying to Green

• Green pipelines are the mirror image of blue.
• The automatic promotion condition is:

result = 'passed' AND tag =~ '^v.*-green$'
• Import env-green instead of env-blue in secrets.
• Reverse the values of $COLOR_TEST,$COLOR_ACTIVE, and$COLOR_DECOMISSION:
replace blue with green, and green with blue.

Figure 24: green deploy pipelines

Figure 25: create the green activate & cleanup pipelines

When you’re done, save your work with Run the Workflow > Start.

Deploying to Green
Let’s do this. Imagine we want to release v1.0 of our awesome application. It’s green’s
turn to be in production. Run these commands to start the green release:

1. Get the latest revision from GitHub.
$ git pull origin setup-semaphore
$ git checkout setup-semaphore

2. Create a release according to the naming convention.
$ git tag -a v1.0-green -m "release v1.0 to green"
$ git commit -m "releasing v1.0"
$ git push origin v1.0-green

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 23

Deploying to Green

3. Semaphore picks up the commit and begins working. When the deploy pipeline
stops, click on promote to switch traffic to green:

Figure 26: switch users to green

Figure 27: green route active

4. If everything goes as planned, the happy path is to decommission blue:

Figure 28: green deployment complete

You can check the status of your deployment with the following commands:

$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-green 1/1 1 1 72m

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 24

Handling Simultaneous Deployments

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-green-664d56548d-5rm24 1/1 Running 0 72m

$ kubectl get virtualservice,destinationrules
NAME GATEWAYS HOSTS
virtualservice.networking.istio.io/myapp-blue-green [myapp-gateway] [*]

NAME HOST AGE
destinationrule.networking.istio.io/myapp-blue-green myapp 70m

$ kubectl get gateway
NAME AGE
myapp-gateway 75m

To view the active route run: kubectl describe virtualservice/myapp-
blue-green

Figure 29: active route

Handling Simultaneous Deployments
There is a possible edge case in our process: if we make two simultaneous releases, we
could find ourselves deploying a different version than the one we intended.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 25

Handling Simultaneous Deployments

To prevent concurrency side-effects, we can set up pipeline queues. Pipeline queues let
us force pipelines to run sequentially.

You’ll have to edit the pipeline YAML directly to change this setting as theworkflow editor
doesn’t yet have the option. The pipeline files are located on the .semaphore folder,
at the root of the project.

Figure 30: blue-green deployment

First, do a git pull to ensure you’re working on the latest revision:

$ git pull origin setup-semaphore

Next, add the following lines to the deployment pipeline files. You should change eight
files in total: “Deploy to Blue/Green”, “Activate Blue/Green”, and the decommission and
the rollback pipelines.

queue:
name: shared kubernetes deployment
scope: organization

This option puts the pipelines an organization-wide queue called “shared kubernetes
deployment”, ensuring that pipelines belonging to that queue always run sequentially.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 26

https://docs.semaphoreci.com/essentials/pipeline-queues/

Adding More Sanity Checks

You can also set up conditions for placing pipelines in different queues. For further
details, read about the queue property.

Push the changes to update the pipelines:

$ git add .semaphore/*
$ git commit -m "setup shared deployment queue"
$ git push origin setup-semaphore

Adding More Sanity Checks
Can you imagine what would happen if someone presses the promote button in a stale
workflow by mistake? It’s difficult to say for sure, but the consequences aren’t likely to
be good.

To minimize the impact of human errors, you can add checks before every command
that affects the cluster. We’ve already done some of that when we created the
“Blue/Green not active” block in the deployment pipeline.

The trick is to add labels to the Kubernetes resources and usekubectl get to validate
their value before changing things. For example, youmay add the Semaphore workflow
id into the deployment manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-$COLOR_TEST
labels:

app: myapp
color: $COLOR_TEST
workflow: $SEMAPHORE_WORKFLOW_ID

... rest of the manifest ...

And test that the workflow label on the cluster is valid before changing the route:

test "$(\
kubectl get deployments \
-l app=myapp,color=$COLOR_DEPLOY,workflow=$SEMAPHORE_WORKFLOW_ID \
-o=jsonpath={.items..metadata.name}\
)" = "myapp-${COLOR_DEPLOY}"

Because any command that exits non-zero status stops the pipeline, this effectively pre-
vents anyone from activating an invalid route. Youmay also add failsafe checks to verify
that the pods are on the correct version and to validate the deployment. Themore sanity
tests you add, the more robust the process becomes.

Trying the Blue Pipeline
Let’s be thorough and try blue by simulating a second release.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 27

https://docs.semaphoreci.com/reference/pipeline-yaml-reference/#queue

Conclusion

1. Start the process by tagging as blue.

$ git tag -a v2.0-blue -m "release v2.0 to blue"
$ git commit -m "releasing v2.0"
$ git push origin v2.0-blue

2. This time, the blue pipelines are activated.
3. Wait for it to stop, press promote.

Figure 31: blue promotion

4. You can now remove green or try a rollback.

Figure 32: blue route is active

Blue route is now active. You just finished your first blue-green cycle, way to go!

Conclusion
Upgrading is always a risky business. No matter how much testing we do, there’s still a
chance for something to go wrong. But with a few carefully placed tests and a robust
CI/CD workflow, we can avoid a lot of headaches.

With a fewmodifications, you can adapt these pipelines to any application and cloud. By
all means, play with them, swap parts as required, or experiment with different routing
strategies. You can even use a setup like this to do canary releases.

We have a lot of great resources to help you with your Docker and Kubernetes learning:

• What is Blue-Green Deployment?
• CI/CD with Docker and Kubernetes: Learn Docker, Kubernetes, and CI/CD princi-
ples with this free eBook.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 28

https://semaphoreci.com/blog/what-is-canary-deployment
https://semaphoreci.com/blog/blue-green-deployment
https://semaphoreci.com/resources/cicd-docker-kubernetes

Conclusion

• How to Release Faster with Continuous Delivery for Google Kubernetes: Shows
deployment for Google Kubernetes Engine.

• CI/CD for Microservices on DigitalOcean Kubernetes: Deploy to DigitalOcean Ku-
bernetes.

• Continuous Integration and Delivery to AWS Kubernetes: Learn how to use AWS
Elastic Kubernetes Service.

Thanks for reading!

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 29

https://semaphoreci.com/blog/continuous-delivery-google-kubernetes
https://semaphoreci.com/blog/cicd-microservices-digitalocean-kubernetes
https://semaphoreci.com/blog/continuous-integration-delivery-aws-eks-kubernetes

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/blog/continuous-blue-green-
deployments-with-kubernetes

Original publication date: 8 Sep 2020

Authors: Tomas Fernandez

Build date: Sep 2022

Revision: 045d7b6

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 30

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/blog/continuous-blue-green-deployments-with-kubernetes
https://semaphoreci.com/blog/continuous-blue-green-deployments-with-kubernetes

	Why Kubernetes?
	Blue-green Deployments with Kubernetes
	Getting Ready
	Preparing the Manifests
	Istio Manifests
	Kubernetes Manifests

	Setting Up Your Continuous Integration Pipelines
	How to Organize Releases
	Step 1: Decide Which Pipeline Should Start
	Step 2: Deploy
	Step 3: Test the Deployment
	Step 4: Go Live
	Step 5: Cleanup or Rollback
	Deployment Flowchart

	Connecting Semaphore with Kubernetes
	Blue Pipelines
	Adding a Sanity Check
	Adding a Deployment Block
	Adding Smoke Tests
	Activating the Blue Route

	Cleanup Pipelines
	Decommission Pipeline
	Rollback Pipeline

	Green Pipelines
	Deploying to Green
	Handling Simultaneous Deployments
	Adding More Sanity Checks
	Trying the Blue Pipeline
	Conclusion

