
Transitioning
from Monolith to
Microservices
Handbook

Transitioning from Monolith to Microservices Handbook

Converting monoliths to the microservice architecture

Semaphore

1

Contents

Preface . 7
Who Is This Book for, and What Does It Cover? 7
Additional recommended reading . 7
How to Contact Us . 8
About the Authors . 8
About the Editor . 8
About the Reviewer . 8

Chapter 1 Ů What Are Microservices? 9
1.1 What is microservice architecture? . 9
1.2 Microservice vs. monolith architectures . 9
1.3 BeneĄts of microservices . 10

1.3.1 Scalability . 10
1.3.2 Fault isolation . 10
1.3.3 Smaller teams . 10
1.3.4 The freedom to choose the tech stack 10
1.3.5 More frequent releases . 10

1.4 The caveats of microservice design . 10
1.5 Microservice design challenges . 11
1.6 Reasons not to migrate to microservices . 12

1.6.1 Microservices are only viable for mature products 12
1.6.2 Microservices are not a good Ąt for startups 12
1.6.3 Microservices arenŠt the best for On-Premise installations 13
1.6.4 If itŠs working, donŠt Ąx it . 13
1.6.5 BrookeŠs Law and developer productivity 14
1.6.6 You may not be prepared for the transition 15

1.7 Is it the right time for the switch? . 16
1.8 Revitalizing monoliths . 16
1.9 The modular monolith as an alternative to microservices 16
1.10 Scalable monoliths . 18

Chapter 2 Ů How to Restructure Your Organization for Microservices 20
2.1 Hierarchical organizations . 20
2.2 The pod model . 22
2.3 Ownership is the key . 23
2.4 Cross-service Ąnger-pointing . 23
2.5 Pods need support . 25
2.6 The STOSA model . 25

Chapter 3 Ů Design Principles for Microservices 27
3.1 What is Domain-Driven Design? . 28

3.1.1 Bounded Context (BC) . 29
3.1.2 Context Map . 29

2

3.2 Domain-Driven Design for microservices . 30
3.3 Strategic phase . 30

3.3.1 Types of relationships . 32
3.4 Tactical phase . 33
3.5 Domain-Driven Design is iterative . 34
3.6 Complementary design patterns . 34

Chapter 4 Ů From Monolith to Microservices 36
4.1 The single point of fragility . 36
4.2 Slow development cycles . 37
4.3 Preparing your monolith for transitioning to microservices 38
4.4 A migration plan . 38

4.4.1 Put everything in a monorepo . 38
4.4.2 Use a shared CI pipeline . 39
4.4.3 Ensure you have enough testing . 39
4.4.4 Install an API Gateway or HTTP Reverse Proxy 40
4.4.5 Consider the monolith-in-a-box pattern 41
4.4.6 Warm up to changes . 42
4.4.7 Use feature Ćags . 42
4.4.8 Modularize the monolith . 43
4.4.9 The strangler Ąg pattern . 44
4.4.10 The anticorruption layer pattern . 45
4.4.11 Decouple the data . 45
4.4.12 Add observability . 47

4.5 Techniques for testing microservices . 47
4.6 The testing pyramid for microservices . 48

4.6.1 Unit tests for microservices . 48
4.6.2 Contract testing . 49
4.6.3 Integration tests . 50
4.6.4 Component tests for microservices . 51
4.6.5 In-process component testing . 52
4.6.6 Out-of-process component testing . 54
4.6.7 End-to-end testing in microservices . 54

4.7 Changing the testing paradigm . 55

Chapter 5 Ů Running Microservices 56
5.1 Deploying microservices . 56
5.2 Ways to deploy microservices . 56

5.2.1 Single machine, multiple processes . 57
5.2.2 Multiple machines and processes . 59
5.2.3 Deploy microservices with containers 60
5.2.4 Containers on servers . 62
5.2.5 Serverless containers . 62
5.2.6 Orchestrators . 63
5.2.7 Deploy microservices as serverless functions 65

3

5.3 Which method is best to deploy microservices? 67
5.4 Release management for microservices . 67

5.4.1 A common approach: one microservice, one repository 67
5.5 Maintaining multiple microservices releases . 68
5.6 Managing microservices releases with monorepos 69
5.7 Never too far away from safety . 71
5.8 When in doubt, try monorepos . 72

Parting Words 73
6.1 Share This Book With The World . 73
6.2 Tell Us What You Think . 73
6.3 About Semaphore . 73

4

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International. To view a copy of this license, visit https://creativecommons.org/licenses/by-
nc-nd/4.0

This book is open source: https://github.com/semaphoreci/book-microservices

Published on the Semaphore website: https://semaphoreci.com/resources/microservices

Sep 2022: First edition v1.0 (revision e932d9d)

5

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/book-microservices
https://semaphoreci.com/resources/microservices?utm_medium=social&utm_source=pdf&utm_campaign=microserviceshandbook

Share this book:

IŠve just started reading ŞTransitioning from Monolith to Microservices HandbookŤ
a free ebook by @semaphoreci: https://bit.ly/3eWMTA0 (Tweet this!)

6

https://ctt.ac/fywdO

Preface

Microservices are the most scalable way of developing software. As projects grow in size
and complexity, one of the possible ways forward is to break the system into autonomous
microservices and hand them out to different teams.

Given the advantages, one would be forgiven for thinking that microservices are the superior
architecture. But there are some caveats that, if ignored, can lead to development hell. This
book aims to help you decide when migrating your monolith to the microservice architecture
is a good idea, if so, navigate the choppy waters ahead.

Who Is This Book for, and What Does It Cover?

This book is intended for software engineers at every level and tech leaders who are either
exploring microservice architecture or are faced with serious scalability problems in their
monolith applications.

• In chapter 1 we deĄne microservices and weight this architecture model against the
alternatives. If youŠre unsure if microservices is right for your project, be sure to not
skip this chapter.

• Chapter 2 talks about the cultural transformation a company must undergo to be
effective at microservice design and operations.

• Chapter 3 covers design techniques for microservice application. We take a deep dive
into Domain-Driven Design and how it applies to microservices.

• Chapter 4 goes to the core of breaking up the monolith. We lay a plan for the migration,
discuss the steps required to prepare the monolith before the transition, and explore
techniques for testing microservice applications.

• Chapter 5 covers the operational side of running a microservice application, including
deployment and release management.

Additional recommended reading

You wonŠt learn absolutely everything you need to design and run microservices in this
book. Instead, the focus is to break up a monolith since this is the most common (and
even recommended) path to microservices. As supplementary material, we recommend the
following free ebooks also published by Semaphore:

• CI/CD with Docker and Kubernetes: itŠs common practice to run microservices with
containers and orchestrate them with Kubernetes. This book will introduce both
concepts and show step-by-step how to work with them.

• CI/CD for Monorepos: monorepos are a popular way of organizing and developing
microservice codebases. This book will show you the best ways of working with
monorepos.

7

https://semaphoreci.com/resources/cicd-docker-kubernetes
https://semaphoreci.com/resources/monorepo-cicd

How to Contact Us

We would very much love to hear your feedback after reading this book. What did you like
and learn? What could be improved? Is there something we could explain further?

A beneĄt of publishing electronically is that we can continuously improve it. And thatŠs
exactly what we intend to do based on your feedback.

You can send us feedback by sending an email to learn@semaphoreci.com.

Find us on Twitter: https://twitter.com/semaphoreci

Find us on Facebook: https://facebook.com/SemaphoreCI

Find us on LinkedIn: https://www.linkedin.com/company/rendered-text

About the Authors

Pablo Tomas Fernandez Zavalia is an electronic engineer and writer. He started out
developing for the City Hall of Buenos Aires (buenosaires.gob.ar). After graduating, he joined
British Telecom as head of the Web Services department in Argentina. He then worked for
IBM as a database administrator, where he also did tutoring, DevOps, and cloud migrations.
In his free time, he enjoys writing, sailing, and board games. Follow Tomas on Twitter at
@tomfernblog.

Lee Atchison is a software architect, published author, and frequent public speaker on the
topics of cloud computing and application modernization. Follow Lee at @leeatchison.

About the Editor

Marko Anastasov is a software engineer, author, and entrepreneur. Marko co-founded
Rendered Text, the software company behind the Semaphore CI/CD service. He worked on
building and scaling Semaphore from an idea to a cloud-based platform used by some of the
worldŠs best engineering teams. Follow Marko on Twitter at @markoa.

About the Reviewer

Dan Ackerson picked up most of his soft and hardware troubleshooting skills in the US
Army. A decade of Java development drove home to operations, scaling infrastructure to
cope with the thundering herd. Engineering coach and CTO of Teleclinic.

8

mailto:learn@semaphoreci.com
https://twitter.com/semaphoreci
https://facebook.com/SemaphoreCI
https://www.linkedin.com/company/rendered-text
https://twitter.com/tomfernblog
https://twitter.com/leeatchison
https://twitter.com/markoa

Chapter 1 Ů What Are Microservices?

Beloved by tech giants like NetĆix and Amazon, microservices have become the darlings in
modern software development. But, despite the beneĄts, this is a paradigm that is easy to
get wrong. So, letŠs explore what microservices are and, more importantly, what they are not.

1.1 What is microservice architecture?

The microservice architecture is a software design approach that decomposes an application
into small independent services. These services communicate over well-deĄned APIs, which
means that services can be developed and maintained by autonomous teams, making it the
most scalable method for software development.

1.2 Microservice vs. monolith architectures

Microservice design is the polar opposite of monolith development. A monolith is one big
codebase (Şthe kitchen sinkŤ) that implements all functionalities. Everything is in one place,
and no single component can work in isolation.

On the plus side, monoliths are easy to get up and running. Airbnb, to give an example,
started with The Monorail, a Ruby on Rails application. While the company was still small,
developers could iterate fast. Making broad changes was easy as the relationships between
the different parts of the monolith were transparent.

As a company grows and teams increase in size, however, monolith development becomes
troublesome. Soon, the system can no longer Ąt in a single head Ů there are just too many
moving parts, so things slow down.

Figure 1: Monolith vs microservice architecture

9

1.3 BeneĄts of microservices

Microservices allow companies to keep teams small and agile. The idea is to decompose
the application into small services that can be autonomously developed and deployed by
tightly-knitted teams.

1.3.1 Scalability

The main reason that companies adopt microservices is scalability. Services can be developed
and released independently without arranging large-scale coordination efforts within the
organization.

1.3.2 Fault isolation

A beneĄt of having a distributed system is the ability to avoid single failure points. You can
deploy microservices in different availability zones with cloud-enabled technologies, ensuring
that your users never experience an outage.

1.3.3 Smaller teams

With microservices, the development team can stay small and cohesive. The smaller the
group, the less communication overhead and the better the collaboration.

Amazon, as an example, takes team size to the extreme with their two pizza teams. Meaning
that a team should be small enough to be fed by two pizzas.

1.3.4 The freedom to choose the tech stack

With a monolith, language and tech stack options are pretty much set in stone from the
beginning. New developers must adapt to whatever choices were made in the past.

In contrast, each microservice can use the tech stack that is most appropriate for solving the
task at hand. Thus, the team can pick the best tool for the job and based on their skills.
For example, you can implement a high-performing service in Go or C and a high-tolerance
microservice with Elixir.

1.3.5 More frequent releases

The development and testing cycle is shorter as small teams iterate quick. And, because
they can also deploy their updates at any time, microservices can be updated much more
frequently than a monolith.

1.4 The caveats of microservice design

At Ąrst glance microservices sound wonderful. They are modular, scalable, and fault tolerant.
A lot of companies have had great success using this model, so microservices might naturally
seem to be the superior architecture and the best way to start new applications.

10

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/two-pizza-teams.html

However, most Ąrms that have succeeded with microservices did not begin with them. Consider
the examples of Airbnb and Twitter, which went the microservice route after outgrowing
their monoliths and are now battling its complexities. Even successful companies that use
microservices appear to still be Ąguring out the best way to make them work. It is evident
that microservices come with their share of tradeoffs.

1.5 Microservice design challenges

Migrating from a monolith to microservices is also not a simple task, and creating an untested
product as a new microservice is even more complicated. Microservices should only be
seriously considered after evaluating the alternative paths. So, before embarking on a costly
transition to microservices, we should talk about their shortcomings and limitations:

• Small: applies both to the team size and the codebase. A microservice must be small
enough to be entirely understood by one person. As a rule of thumb, a microservice is
too big if it would take it more than one sprint to rewrite it from scratch.

• Focused on one thing: a microservice must focus on one aspect of the problem or
perform only one task.

• Autonomous: each microservice has its own database or persistence layer that is not
shared with other services.

• Aligned with the bounded context: in software, we create models to represent the
problem we want to solve. A bounded context represents the limits of a given model.
Contexts are natural boundaries for services, so Ąnding them is the most difficult and
crucial part of designing a good microservice architecture.

• Loosely-coupled: while microservices can depend on other microservices, we must be
careful about how they communicate. Each time a bounded context is crossed, some
level of abstraction and translation is needed to prevent behavior changes in one service
from affecting too much the rest.

• Independently deployable: being autonomous and loosely-coupled, a team can deploy
their microservice with little external coordination or integration testing. Microservices
should communicate over well-deĄned APIs and use translation layers to prevent
behavior changes in one service from affecting the others.

11

https://thenewstack.io/how-airbnb-and-twitter-cut-back-on-microservice-complexities

Figure 2: The key properties of microservice architecture

1.6 Reasons not to migrate to microservices

The caveats and strict limitations make microservices a bad Ąt for some types of workloads
and applications. LetŠs see some common cases where microservices architecture is not
recommended.

1.6.1 Microservices are only viable for mature products

On the topic of starting a new project with microservices, Martin Fowler observed that:

1. Almost all the successful microservice stories started with a monolith that
got too big and was broken up.

2. Almost all the cases where a system that was built as a microservice system
from scratch, ended up in serious trouble.

This pattern has led many to argue that you shouldnŠt start a new project with
microservices, even if youŠre sure your application will be big enough to make it
worthwhile.

The crux of the matter is that the Ąrst design is rarely optimal. The Ąrst few iterations of any
new product are spent Ąnding what users really need. Therefore, success hinges on staying
agile and being able to quickly improve, redesign, and refactor. In this regard, microservices
are manifestly worse than a monolith. If you donŠt nail the initial design, youŠre in for a
rough start, as itŠs much harder to refactor a microservice than a monolith.

1.6.2 Microservices are not a good Ąt for startups

As a startup, you already are running against the clock, looking for a breakthrough before
running out of capital. You donŠt need the scalability at this point (and probably not for a
few years yet), so why make things harder by using a complicated architecture model?

12

https://martinfowler.com/bliki/MonolithFirst.html

A similar argument can be made when working on greenĄeld projects, which are unconstrained
by earlier work and hence have nothing upon which to base decisions. Sam Newman, author
of Building Microservices: Designing Fine-Grained Systems, stated that it is very difficult to
build a greenĄeld project with microservices:

I remain convinced that it is much easier to partition an existing ŞbrownĄeldŤ
system than to do so upfront with a new, greenĄeld system. You have more to
work with. You have code you can examine, you can speak to people who use
and maintain the system. You also know what ŚgoodŠ looks like Ű you have a
working system to change, making it easier for you to know when you may have
got something wrong or been too aggressive in your decision-making process.

1.6.3 Microservices arenŠt the best for On-Premise installations

Microservice deployment needs robust automation because of all the moving parts involved.
Under normal circumstances, we can rely on continuous deployment pipelines for the job.

This wonŠt Ćy for on-premise environments, where developers publish a package and itŠs up
to the customer to manually deploy and conĄgure everything on their own. Microservices
make all these tasks especially challenging, so this is a release model that does not Ąt nicely
with microservice architecture.

To be clear, developing an On-Premise microservice application is entirely viable. Semaphore
is accomplishing just that with Semaphore On-Premise. However, as we realized along the
way, there are several challenges to overcome. Consider the following before deciding to adopt
microservices design for On-Premise installations:

• Versioning rules for On-Premise microservices are more stringent. You must carefully
track each individual microservice that participates in a release.

• You must carry out thorough integration and end-to-end testing, as you canŠt test in
production.

• Troubleshooting a microservice application is substantially more difficult without direct
access to the production environment.

1.6.4 If itŠs working, donŠt Ąx it

If we measure productivity as the number of value-adding features implemented over time,
then it follows that switching architecture while productivity is strong makes little sense.

Teams working on monoliths tend to be more productive initially. Only after the monolith
grows in complexity, microservices appear as a viable alternative. So, itŠs best to stick with
monoliths until the point where productivity decreases.

13

https://semaphoreci.com/blog/books-every-senior-engineer-should-read#building-microservices-designing-fine-grained-systems-by-sam-newman
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com/enterprise/on-premise

Figure 3: Microservices are initially the less productive architecture due to maintenance
overhead. As the monolith grows, it gets more complex, and itŠs harder to add new features.
Microservice only pays off after the lines cross.

1.6.5 BrookeŠs Law and developer productivity

In The Mythical Man Month (1975), Fred Brook Jr. stated that Şadding manpower to a
late software project only makes things worseŤ. This happens because new developers must
be mentored before they can work on a complex codebase. Also, as the team grows, the
communication overhead increases. ItŠs harder to get organized and make decisions.

14

https://semaphoreci.com/blog/books-every-senior-engineer-should-read#month

Figure 4: BrookŠs law applied to complex software development states that adding more
developers to a late software project only makes it take longer.

Microservices are one method of reducing the impact of BrookeŠs Law. You get smaller, more
agile and communicative teams. Before deciding on using microservices, however, you must
determine if BrookeŠs Law is affecting your team. Switching to microservices too soon would
not be a wise investment.

1.6.6 You may not be prepared for the transition

Some conditions must be met before you can begin working with microservices. Along with
preparing your monolith, youŠll need to:

• Set up continuous integration and continuous delivery for automatic deployment.
• Implement quick provisioning to build infrastructure on demand.
• Learn about cloud-native tech stacks, including containers, Kubernetes, and serverless.
• Get acquainted with Domain-Driven Design, Test-Driven Development, and Behavior-

Driven Development.
• Reorganize the teams to be cross-functional, removing silos and Ćattening hierarchies

to allow for innovation.
• Foster a DevOps culture in which the lines between developer and operations jobs are

blurred.

Changing the culture of an organization can take years. Learning all that there is to know
will take months. Without preparation, transitioning to microservices is unlikely to succeed.

WeŠll talk more about restructuring organizations in the next chapter.

15

https://semaphoreci.com/cicd
https://semaphoreci.com/blog/test-driven-development
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://kanbanize.com/blog/cross-functional-teams/

1.7 Is it the right time for the switch?

Microservices are the most scalable way we have to develop software, no doubt about that.
But they are not free lunches. They come with some risks that are easy to run afoul of if
youŠre not cautious. They are great when the team is growing and you need to stay fast and
agile. But you need to have a good understanding of the problem to solve, or you can end up
with a distributed monolith.

We can summarize this whole discussion about transitioning to microservices in one sentence:
donŠt do it unless you have a good reason. Companies that embark on the journey to
microservices unprepared and without a solid design will have a very tough time. You need
to achieve a critical mass of engineering culture and scaling know-how before microservices
should be considered as an option.

1.8 Revitalizing monoliths

YouŠve downloaded this book because youŠre interested in microservices. Presumably, because
you are not satisĄed with your monolith. As an alternative to microservices, letŠs discuss a
few ways in which you can revitalize your monolith and squeeze a few more good years out
of it.

There are two moments in the lifetime of a project in which microservices might seem the
only way forward:

• Tangled codebase: itŠs hard to make changes and add features without breaking
other functionality.

• Performance: youŠre having trouble scaling the monolith.

There are ways to address both problems.

1.9 The modular monolith as an alternative to microservices

A common reason developers want to avoid monoliths is their proclivity to deteriorate into a
tangle of code (the Şbig ball of mudŤ). ItŠs challenging to add new features when we get to
this point since everything is interconnected.

But a monolith does not have to be a mess. Take the example of Shopify: with over 3 million
lines of code, theirs is one of the largest Rails monoliths in the world. At one point, the
system grew so large it caused much grief to developers:

The application was extremely fragile with new code having unexpected repercus-
sions. Making a seemingly innocuous change could trigger a cascade of unrelated
test failures. For example, if the code that calculates our shipping rate is called
into the code that calculates tax rates, then making changes to how we calculate
tax rates could affect the outcome of shipping rate calculations, but it might not
be obvious why. This was a result of high coupling and a lack of boundaries,
which also resulted in tests that were difficult to write, and very slow to run on
CI.

16

https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity

Instead of rewriting their entire monolith as microservices, Shopify chose modularization as
the solution.

Figure 5: Modularization helps design better monoliths and microservices. Without carefully
deĄned modules, we either fall into the traditional layered monolith (the big ball of mud) or,
even worse, as a distributed monolith, which combines the worst features of monoliths and
microservices.

Modularization is a lot of work, thatŠs true. But it also adds a ton of value because it
makes development more straightforward. New developers do not have to know the whole
application before they can start making changes. They only need to be familiar with one
module at a time. Modularity makes a large monolith feel small.

Modularization is a required step before transitioning to microservices, and for some, it may
be a better solution than microservices. The modular monolith, like in microservices, solves
the tangled codebase problem by splitting the code into independent modules. Unlike with
microservices, where communication happens over a network, the modules in the monolith
communicate over internal API calls.

17

https://shopify.engineering/shopify-monolith

Figure 6: Layered vs modular monoliths. Modularized monoliths share many of the charac-
teristics of microservice architecture sans the most difficult challenges.

1.10 Scalable monoliths

Another misconception about monoliths is that they canŠt scale. If youŠre experiencing
performance issues and think that microservices are the only way out, think again. Shopify
has shown us that sound engineering can make a monolith work on a mind-boggling scale.

18

https://twitter.com/ShopifyEng/status/1465806691543531525

Figure 7: Shopify bragging about their Black Friday stats

The architecture and technology stack will determine how the monolith can be optimized;
a process that almost invariably will start with modularization and can leverage cloud
technologies for scaling:

• Deploying multiple instances of the monolith and using load balancing to distribute
the traffic.

• Distributing static assets and frontend code using CDNs.
• Using caching to reduce the load on the database.
• Implementing high-demand features with edge computing or serverless functions.

19

Chapter 2 Ů How to Restructure Your Organization for

Microservices

When companies think about how to restructure their organizations, they often focus on
the new roles that must be Ąlled and the skills that employees need to learn. However,
restructuring your organization to support microservice-based applications goes beyond a
few roles and job titles. A company restructuring for microservices requires an entire culture
shift and new way of working.

2.1 Hierarchical organizations

In order to take advantage of much of the value of a service-oriented architecture, you must
change your traditional hierarchical organizational structure to a more horizontal one.

In a traditional hierarchical organization, such as that shown in Figure 8, your engineering
company is organized around roles and job functions. Here, multiple development teams
are created, and each team is responsible for building part of the application. Once theyŠve
completed their assigned job functions, responsibility is handed to the next group, often a QA
group, which performs testing and the remainder of their job functions. Finally, responsibility
is transferred to an IT operations team for hosting and operating the application. Additionally,
other groups have their own roles and job functions, such as security, which is responsible for
keeping the product and the company safe and secure.

20

Figure 8: Traditional hierachical organization structure.

Everyone has their own deĄned job function. Everyone has their assigned roles. The problem
is, nobody is responsible for the product as a whole. Nobody owns the application. Organiza-
tionally, you have to go all the way to the highest level of engineering managementŮsuch as
the VP of engineering or CTO/CPOŮbefore you Ąnd someone who owns and manages the
product as a whole. This type of structure leads to Ąnger-pointing and a Şnot-my-problemŤ
mentality.

Everyone has a role to Ąll, but no one has responsibility.

When you build your application using microservices, one of the advantages is the ability
to deĄne and manage smaller chunks of the application as a whole. This advantage isnŠt as
useful when you keep the traditional organizational structure. You have just moved from
having one large application with no owner, to hundreds of smaller applications with no
owners.

To fully take advantage of the structural beneĄts of a microservice application architecture,
you must modify your organizational structure to match that model. Most importantly, you
must move from a roles and job functions assignment model to a ownership and responsibility
assignment model.

21

2.2 The pod model

In the pod model, your organization is not split by job functions; instead, itŠs split into small,
cross-functional teams, called pods. Each team has the capabilities, the resources, and the
support required to be completely responsible for a small portion of the overall applicationŮa
service or two in the microservice architecture model.

A pod that owns microservices within the application typically consists of 6-10 people with
the following types of job skills:

• Team management
• Software development
• Software validation
• Service operation
• Service scaling and maintaining availability
• Security
• Operational support and maintenance
• Infrastructure operational maintenance (servers, etc.)

ItŠs important that the team has the necessary skills to perform these jobs. But, in a pod
model, the pod as a whole has responsibilities, and no single person is assigned speciĄc job
functions. In other words, there is no Şsecurity person,Ť or ŞDevOps person,Ť or ŞQA personŤ
in the pod. Instead, everyone in the pod shares the entire podŠs responsibilities.

Figure 9 shows the same organization using a pod model. The pods are each independent
and peers of one another, and each pod provides cross-functional responsibilities.

Figure 9: Pod-based organizational structure

22

2.3 Ownership is the key

The key to successfully operating the pod model is to create pods with responsibilities
that arenŠt speciĄc job functions. Rather, their responsibilities are ownership. A pod owns
a service or set of services. Ownership means they have complete responsibility for the
architecture, design, creation, testing, operation, maintenance, and security of the service. No
one else has ownership, only the assigned pod. If anything happens to that service, it is the
podŠs responsibility to manage and Ąx. This completely removes the ability to Ąnger-point to
another team when a service fails. The serviceŠs owning pod is the one responsible. This is
illustrated in Figure 10, where interconnected services are represented in blue, and the pods
that own those services are shown in red.

Figure 10: Every service has an owner.

Every service has exactly one owner, and if something is failing in a service, it is completely
clear which pod is responsible for resolving the issue.

2.4 Cross-service Ąnger-pointing

But what happens if problems cross service boundaries? For example, what happens if Service
E in Figure 10 is causing problems for Service C? In that case, it may appear that both
services are having problems, and it may not be clear where the root cause of the problem

23

resides. Because the two services are owned by different pods, which pod owns the problem?
The answer may be difficult and complex to determine. Finger pointing between Pod 2 and
Pod 4 is deĄnitely a possibility.

If you have successfully set up a pod model and have ingrained a strong ownership mindset
into the members of the pods, the likelihood of Ąnger-pointing in this case should be low.
What should happen in a high-quality team organization is both Pod 2 and Pod 4 work
together to resolve the issue.

Although this is the way things should work, thatŠs not sufficient. The model must help
resolve these ownership issues quickly and decisively in order to keep your application working,
at scale, and maintain high availability. This is where two characteristics of your microservice
architecture are critical: Well-designed and documented APIs and solid, maintainable
SLAs. Not everyone who promotes moving to microservice architectures drives these two
characteristics; but in my mind, they are the two most important characteristics of a solid
microservice architecture, and they are critical to the ownership organizational model. LetŠs
look at these two microservice characteristics:

• Well-designed and documented APIs. Each and every service in your application
must have a well-designed API describing how the service should be used and how to
talk to it, and this API must be well-documented across the organization. We are used
to well-designed and documented APIs when we are talking about APIs exposed to
customers. But itŠs equally important to design quality APIs among internal services as
well. No service should talk to any other service without using a well-deĄned
and documented API to that service. This makes sure that expectations on what
each service does and does not do is clear, and those expectations drive higher-quality
interactions and hence fewer application issues.

• Solid, maintainable SLAs. Besides having APIs, a set of performance expectations
around those APIs must be established. If Service C is calling Service EŠs API, itŠs
critical that Service C understand the performance expectations it can expect from
Service E. What will the latency be for the API calls it makes? What happens to
latency if the call rate increases? Are there limits on how often a service can be called?
What happens when those limits are reached?

APIs are about understanding, and SLAs are about expectations. APIs help us know what
other services do and what they are responsible for. SLAs help us know what we can expect
from a performance standpoint from the service.

If Service E in Figure 10 has a well-deĄned and documented API, and has well-deĄned SLAs
on how it should be used and it keeps those SLAs, then as long as Service C is using the
service in accordance with the documented API and keeping within the deĄned SLAs, Service
C should be able to expect reasonable performance from Service E.

Now, in the hypothetical example above, Service E was causing problems for Service C. In
this case, it should be obvious in the measured performance compared with the documented
SLAs that Service E has the problem and not Service C. By using monitoring, and API/SLA
management, diagnosing problems becomes far easier.

24

2.5 Pods need support

In the pod model, pods have a lot of responsibility and a lot of authority. There is no way
that a small team (6-10 people) that composes a pod can handle all aspects of the breadth
and depth of responsibility for all aspects of service ownership without support.

To give them support, horizontal service teams are created to provide tools and support to
the service-owning pods. These teams can handle common pod-independent problems such
as creating CI/CD pipelines, understanding global security issues, creating tooling to manage
infrastructures, and maintaining vendor relationships. The pods can then leverage these
teams to augment the pod and give support to the pod. This is illustrated in Figure 20.

Figure 11: Support teams assisting pods.

ItŠs important to note that these support teams are supporting the pods, and do notŮcan
notŮtake ownership responsibility away from the pods. If a security issue exists in a service,
responsibility for the issue lies with the pod that owns the serviceŮnot with the security
support team. The pods have ultimate control and decision-making responsibilitiesŮand
hence ultimate responsibilityŮfor all aspects of the operation of the services they own.

2.6 The STOSA model

Moving to a service/microservice architecture for your application architecture is a valuable
tool to building and managing large, complex applications. However, just changing the
architecture is not sufficient. You must update your organization structure to support the
new architecture model or you wonŠt be able to effectively utilize the advantages service
architectures offer. Without also organizing your teams around these changes, you risk falling
back into old habits and processes that will result in lack of ownership and responsibility,
and the same general problems you had before you moved to the service architecture.

25

The pod ownership model is part of the STOSA framework. STOSA stands for Single Team
Oriented Service Architecture. It deĄnes a model where service teams Ů pods Ů own all
aspects of building and operating individual services.

The model was developed and introduced in Lee AtchisonŠs book Architecting for Scale. ItŠs
now available as a standalone model documented at stosa.org. We recommend checking it
out.

26

https://architectingforscale.com/
https://stosa.org/

Chapter 3 Ů Design Principles for Microservices

How do you know if youŠre doing proper microservice design? If your team can deploy
an update at any time without coordinating with other teams, and if other teams can
similarly deploy their changes without affecting you, congratulations, you got the knack of
microservices.

The surest way of losing the beneĄts microservices offer is by not respecting the decoupling
rule. If we look closely, we see that microservices are all about autonomy. When this autonomy
is lost, teams must coordinate during development and deployment. Perfect integration
testing is required to make sure all microservices work together.

Figure 12: Tight service dependencies create team dependencies and communication bottle-
necks.

These are all problems that come with distributed computing. If youŠve ever used a cloud
service youŠll know that spreading services or machines over many geographical locations
is not the same as running everything on the same site. A distributed system has a higher
latency, can have synchronization issues, and is a lot harder to manage and debug. This
highly-coupled service architecture is really, deep down, a distributed monolith, with the worst
of both worlds and none of the beneĄts microservices should bring.

If you cannot deploy without coordinating with another team or relying on speciĄc versions
of other microservices to deploy yours, youŠre only distributing your monolith.

Domain-Driven Development allows us to plan a microservice architecture by decomposing
the larger system into self-contained units, understanding the responsibilities of each, and
identifying their relationships.

27

3.1 What is Domain-Driven Design?

Domain-Driven Design (DDD) is a software design method wherein developers construct
models to understand the business requirements of a domain. These models serve as the
conceptual foundation for developing software.

According to Eric Evans, author of Domain-Driven Design: Tackling Complexity in the Heart
of Software, a domain is:

A sphere of knowledge, inĆuence, or activity. The subject area to which the user
applies a program is the domain of the software.

How well one can solve a problem is determined by oneŠs capacity to understand the domain.
Developers are smart, but they canŠt be specialists in all Ąelds. They need to collaborate with
domain experts to guarantee that the code is aligned with business rules and client needs.

Figure 13: Developers and domain experts use a uniĄed language to share knowledge,
document, plan, and code.

The two most important DDD concepts for microservice architecture are: bounded contexts
and context maps.

28

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

3.1.1 Bounded Context (BC)

The setting in which a word appears determines its meaning. Depending on the context,
ŞbookŤ may refer to a written piece of work, or it may mean Şto reserve a roomŤ. A bounded
context (BC) is the space in which a term has a deĄnite and unambiguous meaning.

Before DDD it was common practice to attempt to Ąnd a model that spanned the complete
domain. The problem is that the larger the domain, the more difficult it is to Ąnd a consistent
and uniĄed model. DDDŠs solution is to break down the domain into more manageable
subdomains.

Figure 14: The relevant properties of the ŞbookŤ change from context to context.

In software, we need to be exact. That is why deĄning BCs is critical: it gives us a precise
vocabulary, called ubiquitous language, that can be used in conversations between developers
and domain experts. The ubiquitous language is present throughout the design process,
project documentation, and code.

3.1.2 Context Map

The presence of a BC anticipates the need for communication channels. For instance, if weŠre
working in an e-commerce domain, the salesperson should check with inventory before selling
a product. And once itŠs sold, itŠs up to shipping to ensure delivery of the product to the
correct address. In DDD, these relationships are depicted in the form of a context map.

29

Figure 15: Bounded context communication used to achieve a high-level task.

3.2 Domain-Driven Design for microservices

DDD takes place in two phases:

1. In the strategic phase we identify the BCs and map them out in a context map.
2. In the tactical phase we model each BC according to the business rules of the subdomain.

LetŠs see how each phase plays a role in microservice architecture design.

3.3 Strategic phase

During this phase, we invite developers, domain experts, product owners, and business analysts
to brainstorm, share knowledge and make an initial plan. With the aid of a facilitator, this
can take the form of an Event Storming workshop session, where we build models and identify
business requirements starting from signiĄcant events in the domain.

30

Figure 16: An Event Storming session, domain events are used as the catalyst for sharing
knowledge and identifying business requirements.

In strategic DDD, we take a high-level, top-to-bottom approach to design. We begin by
analyzing the domain in order to determine its business rules. From this, we derive a list of
BCs.

Figure 17: Strategic Domain-Driven Design helps us identify the logical boundaries of
individual microservices.

The boundaries act as natural barriers, protecting the models inside. As a result, every BC
represents an opportunity to implement at least one microservice.

31

Figure 18: Bounded relationships

3.3.1 Types of relationships

Next, we must decide how BCs will communicate. Eric Evans lists seven types of relationships,
while other authors list six of them. Regardless of how we count them, at least three (shared
kernel, customer/supplier, and conformist) imply tight coupling, which we do not want in a
microservice design and can be ignored. That leaves us with four types of relationships:

• Open Host Service (OHS): the service provider deĄnes an open protocol for others to
consume. This is an open-ended relationship, as it is up to the consumers to conform
to the protocol.

• Published Language (PL): this relationship uses a well-known language such as XML,
JSON, GraphQL, or any other Ąt for the domain. This type of relationship can be
combined with OHS.

• Anticorruption Layer (ACL): this is a defensive mechanism for service consumers.
The anti-corruption layer is an abstraction and translation wrapping layer implemented
in front of a downstream service. When something changes upstream, the consumer
service only needs to update the ACL.

• Separate ways: this happens when integration between two services is found, upon
further analysis, to be of little value. This is the opposite of a relationship Ů it means
that the BCs have no connection and do not need to interact.

At the end of our strategic DDD analysis, we get a context map detailing the BCs and their
relationships.

32

https://www.oreilly.com/library/view/what-is-domain-driven/9781492057802/ch04.html

Figure 19: ACL is implemented downstream to mitigate the impact of upstream changes.
OHS does the opposite. ItŠs implemented upstream to offer a stable interface for services
downstream.

3.4 Tactical phase

Deep down, software development is a modeling exercise; we describe a real-life scenario as a
model and then solve it with code. In the previous stage, we identiĄed BCs and mapped
their relationships. In this stage we zoom in on each context to construct a detailed model.

The models created with DDD are technology-agnostic Ů they do not say anything about
the stack underneath. We focus, instead, on modeling the subdomain. The main building
block of our models are:

• Entities: entities are objects with an identity that persists over time. Entities must
have a unique identiĄer (for example, the account number for a customer). While entity
identiĄers may be shared among context boundaries, the entities themselves donŠt need
to be identical across every BC. Each context is allowed to have a private version of a
given entity.

• Value objects: value objects are immutable values without identity. They represent
the primitives of your model, such as dates, times, coordinates, or currencies.

• Aggregates: aggregates create relationships between entities and value objects. They
represent a group of objects that can be treated as a single unit and are always in a
consistent state. For example, customers place orders and own books, so the entities
customer, order, and book can be treated as an aggregate. Aggregates must always be
referenced by a main entity, called the root entity.

• Domain services: these are stateless services that implement a piece of business logic

33

or functionality. A domain service can span multiple entities.
• Domain events: essential for microservice design, domain events notify other services

when something happens. For instance, when a customer buys a book, a payment is
rejected, or that a user has logged in. Microservices can simultaneously produce and
consume events from the network.

• Repositories: repositories are persistent containers for aggregates, typically taking
the form of a database.

• Factories: factories are responsible for creating new aggregates.

Figure 20: The shipping aggregate consists of a package containing books shipped to an
address.

3.5 Domain-Driven Design is iterative

While it may appear that we must Ąrst write an exhaustive description of the domain before
we can begin working on the code, the reality is that DDD, like all software design, is an
iterative process.

On paper, bounded contexts and context maps may appear OK, but when implemented, they
may translate into services that are too big to be rightly called microservices. Conversely,
chatty microservices with overlapping responsibilities may need to be merged into one.

As development progresses and you have a better understanding of the domain, youŠll be
able to make better judgments, enhance models, and communicate more effectively.

3.6 Complementary design patterns

DDD is undoubtedly a theory-heavy design pattern. As a result, it is mostly used for designing
complex systems.

34

Other methods such as Test-Driven Development (TDD) or Behavior-Driven Development
(BDD) may be enough for smaller, simpler systems. TDD is the fastest to start with and
works best when on single microservices or even on applications consisting of only a few
services.

On a bigger scale, we can use BDD, which forces us to validate the wholesale behavior
with integration and acceptance tests. BDD may work well if you work on low to medium-
complexity designs.

You can also combine these three patterns, choosing the best one for each stage of development.
For example:

1. Identify microservices and their relationships with strategic DDD.
2. Model each microservice with tactical DDD.
3. Since each team is autonomous, they can choose to adopt BDD or TDD (or a mix of

both) for developing a microservice or a cluster of microservices.

DDD can feel daunting to learn and implement, but its value for developing a microservice
architecture is well worth the effort. If youŠre interested in learning more, we recommend
picking up the relevant books by Eric Evans and Vaughn Vernon.

35

https://semaphoreci.com/blog/test-driven-development
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://kalele.io/books/

Chapter 4 Ů From Monolith to Microservices

In the previous chapters, we discussed the downsides of microservices and examined ways of
making a monolith remain viable despite growing pressures. The goal was never to dissuade
you from microservices; only to consider all options before taking action. In this chapter,
weŠll talk about the signs crumbling monoliths show.

Overweight monoliths exhibit two classes of problems: degrading system performance and
stability, and slow development cycles. So, whatever we do next comes from the desire to
escape these technical and social challenges.

4.1 The single point of fragility

TodayŠs typical large monolithic systems started off as web applications written in an MVC
framework, such as Ruby on Rails. These systems are characterized by either being a single
point of failure, or having severe bottlenecks under pressure.

Of course, having potential bottlenecks, or having an entire system that is a single point of
failure is not inherently a problem. When youŠre in the third month of your MVP, this is
Ąne. When youŠre working in a team of a few developers on a client project which serves
100 customers, this is Ąne. When most of your appŠs functionality are well-designed CRUD
operations based on human input with a linear increase of load, things are probably going to
be Ąne for a long time.

Also, thereŠs nothing inherently wrong about big apps. If you have one and youŠre not
experiencing any of these issues, thereŠs absolutely no reason to change your approach. You
shouldnŠt build microservices solely in the service of making the app smaller Ů it makes no
sense to replace the parts that are doing their job well.

Problems begin to arise after your single point of failure has actually started failing under
heavy load.

At that point, having a large attack surface can start keeping the team in a perpetual state
of emergency. For example:

• An outage in non-critical data processing brings down your entire website. With
Semaphore, we had events where the monolith was handling callbacks from many CI
servers, and when that part of the system failed, it brought the entire service down.

• You moved all time-intensive tasks to one huge group of background workers, and
keeping them stable gradually becomes a full-time job for a small team.

• Changing one part of the system unexpectedly affects some other parts even though
theyŠre logically unrelated, which leads to some nasty surprises.

As a consequence, your team spends more time solving technical issues than building cool
and useful stuff for your users.

36

4.2 Slow development cycles

The second big problem is when making any change happen begins to take too much time.

There are some technical factors that are not difficult to measure. A good question to consider
is how much time it takes your team to ship a hotĄx to production. Not having a fast delivery
pipeline is painfully obvious to your users in the case of an outage.

WhatŠs less obvious is how much the slow development cycles are affecting your company over
a longer period of time. How long does it take your team to get from an idea to something
that customers can use in production? If the answer is weeks or months, then your company
is vulnerable to being outplayed by competition.

Nobody wants that, but thatŠs where the compound effects of monolithic, complex code bases
lead to.

• Slow CI builds: anything longer than a few minutes leads to too much unproductive
time and task switching. As a standard for web apps we recommend setting the bar at
10 minutes. Slow CI builds are one of the Ąrst symptoms of an overweight monolith, but
the good news is that a good CI tool can help you Ąx it. For example, on Semaphore
you can split your test suite into parallel jobs.

• Slow deployment: this issue is typical for monoliths that have accumulated many
dependencies and assets. There are often multiple app instances, and we need to replace
each one without having downtime. Moving to container-based deployment can make
things even worse, by adding the time needed to build and copy the container image.

• High bus factor on the old guard, long onboarding for the newcomers: it takes
months for someone new to become comfortable with making a non-trivial contribution
in a large code base. And yet, all new code is just a small percentile of the code that
has already been written. The idiosyncrasies of old code affect and constrain all new
code that is layered on top of the old one. This leaves those who have watched the
app grow with an ever-expanding responsibility. For example, having Ąve developers
that are waiting for a single person to review their pull requests is an indicator of this
problem.

• Emergency-driven context switching: we may have begun working on a new
feature, but an outage has just exposed a vulnerability in our system. So, healing it
becomes a top priority, and the team needs to react and switch to solving that issue. By
the time they return to the initial project, internal or external circumstances can change
and reduce its impact, perhaps even make it obsolete. A badly designed distributed
system can make this even worse Ů hence one of the requirements for making one is
having solid design skills. However, if all code is part of a single runtime hitting one
database, our options for avoiding contention and downtime are very limited.

• Change of technology is difficult: our current framework and tooling might not be
the best match for the new use cases and the problems we face. ItŠs also common for
monoliths to depend on outdated software. For example, GitHub upgraded to Rails 3
four years after it was released. Such latency can either limit our design choices, or
generate additional maintenance work. For example, when the library version that
youŠre using is no longer receiving security updates, you need to Ąnd a way to patch it

37

https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
https://docs.semaphoreci.com/reference/pipeline-yaml-reference/

yourself.

4.3 Preparing your monolith for transitioning to microservices

A rewrite is never an easy journey, but by moving from monolith to microservices, you are
changing more than the way you code; you are changing the companyŠs operating model. As
weŠve already mentioned, not only do you have to learn a new, more complex tech stack but
management will also need to adjust the work culture and reorganize your teams.

4.4 A migration plan

It takes a lot of preparation to tear down a monolith, especially when the old system must
remain operational while the transition is made.

The migration steps can be tracked with tickets and worked towards in each sprint like any
other task. This not only helps in gaining momentum (to actually someday achieve the
migration), but gives transparency to the business owners regarding how the team is planning
on implementing such a large change.

During planning, you have to:

• Disentangle dependencies within the monolith.
• Identify the microservices needed.
• Design data models for the microservices.
• Develop a method to migrate and sync data between monolith and microservices

databases.
• Design APIs and plan for backward compatibility.
• Capture the baseline performance of the monolith.
• Set up goals for the availability and performance of the new system.

LetŠs examine a few practices that will help you successfully make the transition.

4.4.1 Put everything in a monorepo

As you break apart the monolith, a lot of code will be moved away from it and into new
microservices. A monorepo helps you keep track of these kinds of changes. In addition,
having everything in one place can help you recover from failures more quickly.

In all likelihood, your monolith is already contained in one repository. So, itŠs just a matter
of creating new folders for the microservices.

38

https://semaphoreci.com/blog/what-is-monorepo

Figure 21: A monorepo is a shared repository containing the monolith and the new microser-
vices.

4.4.2 Use a shared CI pipeline

During development, youŠll not only be constantly shipping out new microservices but also
re-deploying the monolith. The faster and more painless this process is, the more rapidly you
can progress. Set up continuous integration and delivery (CI/CD) to test and deploy code
automatically.

If you are using a monorepo for development, youŠll have to keep a few things in mind:

• Keep pipelines fast by enabling change-based execution or using a monorepo-aware
build tool such as Bazel or Pants. This will make your pipeline more efficient by only
running changes on the updated code.

• ConĄgure multiple promotions, one for each microservice and one more for the monolith.
Use these promotions for continuous deployment.

• ConĄgure test reports to quickly spot and troubleshoot failures.

4.4.3 Ensure you have enough testing

Refactoring is much more satisfying and effective when we are sure that the code has no
regressions. Automated tests give the conĄdence to continuously ship out monolith updates.

An excellent place to start is the testing pyramid. You will need a good amount of unit tests,
some integration tests, and a few acceptance tests.

39

https://semaphoreci.com/cicd
https://docs.semaphoreci.com/essentials/building-monorepo-projects/
https://semaphoreci.com/blog/bazel-build-tutorial-examples
https://semaphoreci.com/blog/building-python-projects-with-pants
https://semaphoreci.com/blog/cicd-pipeline
https://docs.semaphoreci.com/guided-tour/deploying-with-promotions/
https://semaphoreci.com/product/test-reports
https://semaphoreci.com/blog/test-automation
https://semaphoreci.com/blog/testing-pyramid
https://semaphoreci.com/blog/unit-testing
https://semaphoreci.com/blog/integration-tests
https://semaphoreci.com/blog/the-benefits-of-acceptance-testing

Figure 22: The testing pyramid.

Aim to run the tests as often on your local development machine as you do in your continuous
integration pipeline.

4.4.4 Install an API Gateway or HTTP Reverse Proxy

As microservices are deployed, you have to segregate incoming traffic. Migrated features are
provided by the new services, while the not-yet-ready functionality is served by the monolith.

There are a couple of ways of routing requests, depending on their nature:

• An API gateway lets you forward API calls based on conditions such as authenticated
users, cookies, feature Ćags, or URI patterns.

• An HTTP reverse proxy does the same but for HTTP requests. In most cases, the
monolith implements the UI, so most traffic will go there, at least at Ąrst.

40

https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com/blog/cicd-pipeline

Figure 23: Use API gateways and HTTP reverse proxies to route requests to the appropriate
endpoint. You can toggle between the monolith and microservices on a very Ąne-grained
level.

Once the migration is complete, the gateways and proxies will remain Ű they are a standard
component of any microservice application since they offer forwarding and load balancing.
They can also function as circuit breakers if a service goes down.

4.4.5 Consider the monolith-in-a-box pattern

OK, this one only applies if you plan to use containers or Kubernetes for the microservices.
In that case, containerization can help you homogenize your infrastructure. The monolith-in-
a-box pattern consists of running the monolith inside a container such as Docker.

If youŠve never worked with containers before, this is a good opportunity to get familiar with
the tech. That way, youŠll be one step closer to learning about Kubernetes down the road.
ItŠs a lot to learn, so plan for a steep learning curve:

1. Learn about Docker and containers.
2. Run your monolith in a container.
3. Develop and run your microservices in a container.
4. Once the migration is done and youŠve mastered containers, learn about Kubernetes.
5. As the work progresses, you can scale up the microservices and gradually move traffic

to them.

41

https://martinfowler.com/bliki/CircuitBreaker.html

Figure 24: Containerizing your monolith is a way of standardizing deployment, and it is an
excellent Ąrst step in learning Kubernetes.

4.4.6 Warm up to changes

It takes time to get used to microservices, so itŠs best to start small and warm up to the new
paradigm. Leave enough time for everyone to get in the proper mindset, upskill, and learn
from mistakes without the pressure of a deadline.

During these Ąrst tentative steps youŠll learn a lot about distributed computing. YouŠll have
to deal with cloud SLA, set up SLAs for your own services, implement monitoring and alerts,
deĄne channels for cross-team communication, and decide on a deployment strategy.

Pick something easy to start with, like edge services that have little overlap with the rest of
the monolith. You could, for instance, build an authentication microservice and route login
requests as a Ąrst step.

Figure 25: Pick something easy to start, like a simple edge service.

4.4.7 Use feature Ćags

Feature Ćags are a software technique for changing the functionality of a system without
having to re-deploy it. You can use feature Ćags to turn on and off portions of the monolith
as they are migrated, experiment with alternative conĄgurations, or run A/B testing.

42

https://semaphoreci.com/blog/feature-flags

An typical workĆow for a feature-Ćag-enabled migration is:

1. Identify a piece of the monolithŠs functionality to migrate to a microservice.
2. Wrap the functionality with a feature Ćag. Re-deploy the monolith.
3. Build and deploy the microservice.
4. Test the microservice.
5. Once satisĄed, disable the feature on the monolith by switching the feature off.
6. Repeat until the migration is complete.

Because feature Ćags allow us to deploy inactive code to production and toggle it at any
time, we can decouple feature releases from actual deployment. This gives developers an
enormous degree of Ćexibility and control.

4.4.8 Modularize the monolith

If your monolith is a tangle of code, you may very well end up with a tangle of distributed code
once the migration is done. Like tidying up a house before a total renovation, modularizing
the monolith is a necessary preparation step.

The modular monolith is a software development pattern consisting of vertically-stacked
modules which are independent and interchangeable. The opposite of a modular monolith is
the classic N-tier, or layered, monolith.

Figure 26: Layered vs. modular monolith architectures.

43

Layered monoliths are hard to disentangle Ű code tends to have too many dependencies
(sometimes circular), making changes difficult to implement.

A modular monolith is the next best thing to microservices and a stepping stone towards
them. The rule is that modules can only communicate over public APIs and everything is
private by default. As a result, the code is less intertwined, relationships are easy to identify,
and dependencies are clear-cut.

Figure 27: This Java monolith has been split into independent modules.

Two patterns can help you refactor a monolith: the Strangler Fig and the Anticorruption
Layer.

4.4.9 The strangler Ąg pattern

In the Strangler Fig pattern, we refactor the monolith from the edge to the center. We
chew at the edges, progressively rewriting isolated functionality until the monolith is entirely
redone.

Calls between modules are routed through the Şstrangler façade,Ť which emulates and
interprets the legacy codeŠs inputs and outputs. Bit by bit, modules are created and slowly
replace the old monolith.

Figure 28: The monolith is modularized one piece at a time. Eventually, the old monolith is
gone and is replaced by a new one.

44

https://martinfowler.com/bliki/StranglerFigApplication.html

4.4.10 The anticorruption layer pattern

You will Ąnd that, in some cases, changes in one module propagate into others as you refactor
the monolith. To combat this, you can create a translation layer between rapidly-changing
modules. This anticorruption layer prevents changes in one module from impacting the rest.

Figure 29: The anticorruption layer prevents changes from propagating by translating calls
between modules and the monolith.

4.4.11 Decouple the data

The superpower microservices give you is the ability to deploy any microservice at any time
with little or no coordination with other microservices. This is why data coupling must be
avoided at all costs, as it creates dependencies between services. Each microservice must
have a private and independent database.

It can be shocking to realize that you have to denormalize the monolithŠs shared database into
(often redundant) smaller databases. But data locality is what will ultimately let microservices
work autonomously.

45

Figure 30: Decoupling data into separate and independent databases.

After decoupling, youŠll have to install mechanisms to keep the old and new data in sync
while the transition is in progress. You can, for example, set up a data-mirroring service or
change the code, so transactions are written to both sets of databases.

Figure 31: Use data duplication to keep tables in sync during development.

46

4.4.12 Add observability

The new system must be faster, more performant, and more scalable than the old one.
Otherwise, why bother with microservices?

You need a baseline to compare the old with the new. Before starting the migration, ensure
you have good metrics and logs available. It may be a good idea to install some centralized
logging and monitoring service, since itŠs a key component for the observability of any
microservice application.

Figure 32: Metrics are used to compare the performance.

4.5 Techniques for testing microservices

How do we test a microservice application? How do we test when third party services are
involved and network disruptions are a possibility? The microservice architecture is a paradigm
shift so profound that we must reconsider conventional testing techniques. Microservices
differ from the classic monolithic structure in many ways:

• Distributed: microservices are deployed across multiple servers, potentially across
geographical locations, adding latency and exposing the application to network disrup-
tions. Tests that rely on the network can fail due to no fault of the code, interrupting
the CI/CD pipelines and blocking development.

• Autonomous: as long as they donŠt break API compatibility, development teams are
free to deploy their microservices at any time.

• Increased test area: since each microservice exposes at least a few API endpoints,
there are many more testable surfaces to cover.

• Polyglot: development teams can choose the best language for their microservice. In
a big system, itŠs unlikely that weŠll Ąnd a single test framework that works for all
components.

47

https://semaphoreci.com/blog/honeycomb-ceo-on-sharing-customer-pain
https://semaphoreci.com/blog/cicd-pipeline

• Production is a moving target: because microservices are independently-deployable
and built by autonomous teams, extra checks and boundaries are required to assure
they will all still function correctly together when deployed.

All these characteristics force us to think of new testing strategies.

4.6 The testing pyramid for microservices

The testing pyramid is a planning tool for automated software testing. In its traditional form,
the pyramid uses three types of tests:

• Unit tests
• Integration tests
• End-to-end tests.

The microservice pyramid adds two new types: component and contract tests.

Figure 33: One version of the microservice testing pyramid.

LetŠs see how each pyramid layer works in further detail.

4.6.1 Unit tests for microservices

Unit tests are one of the most Ąne-grained Ů and numerous Ů forms of testing. A unit
consists of a class, method, or function that can be tested in isolation. Unit testing is an
inseparable part of development practices like Test-Driven Development or Behavior-Driven
Development.

Compared to a monolith, a unit in a microservice has a much higher chance of requiring a
network call to fulĄll its function. When this happens, we can either let the code access the
external service Ů accepting some latency and uncertainty Ů or replace the call with a test
double, giving us two ways of dealing with microservice dependencies:

48

https://semaphoreci.com/blog/test-automation
https://semaphoreci.com/blog/unit-testing
https://semaphoreci.com/blog/integration-tests
https://semaphoreci.com/blog/e2e-testing
https://semaphoreci.com/blog/test-driven-development
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://semaphoreci.com/community/tutorials/mocking-with-rspec-doubles-and-expectations#h-doubles
https://semaphoreci.com/community/tutorials/mocking-with-rspec-doubles-and-expectations#h-doubles

• Solitary unit tests: this should be used when we need the test result to always be
deterministic. We use mocking or stubbing to isolate the code under test from external
dependencies.

• Sociable unit tests: sociable tests are allowed to call other services. In this mode, we
push the complexity of the test into the test or staging environment. Sociable tests are
not deterministic, but we can be more conĄdent in their results when they pass.

Figure 34: We can run unit tests in isolation using test doubles. Alternatively, we can allow
tested code to call other microservices, in which case weŠre talking about sociable tests.

As youŠll see, balancing conĄdence vs. stability will be a running theme throughout the entire
chapter. Mocking makes things faster and reduces uncertainty, but the more you mock, the
less you can trust the results. Sociable tests, despite their downsides, are more realistic. So,
youŠll likely need to strike a good balance of both types.

If you want to check examples of solitary vs sociable tests, check out this nice post from
Dylan Watson at dev.to.

4.6.2 Contract testing

A contract is formed whenever two services couple via an interface. The contract speciĄes all
the possible inputs and outputs with their data structures and side effects. The consumer
and producer of the service must follow the rules stated in the contract for communication to
be possible.

Contract tests ensure that microservices adhere to their contract. They do not thoroughly
test a serviceŠs behavior; they only ensure that the inputs and outputs have the expected
characteristics and that the service performs within acceptable time and performance limits.

Depending on the relationship between the services, contract tests can be run by the producer,
the consumer, or both.

49

https://dev.to/dylanwatsonsoftware/socialise-your-unit-tests-5da0
https://dev.to/dylanwatsonsoftware/socialise-your-unit-tests-5da0
https://semaphoreci.com/blog/domain-driven-design-microservices#relationship-types

• Consumer-side contract tests are written and executed by the downstream team.
During the test, the microservice connects to a fake or mocked version of the producer
service to check if it can consume its API.

• Producer-side contract tests are run in the upstream service. This type of test
emulates the various API requests clients can make, verifying that the producer matches
the contract. Producer-side tests let the developers know when they are about to break
compatibility for their consumers.

Figure 35: Contract tests can run on the upstream or downstream. Producer tests check
that the service doesnŠt implement changes that would break depending services. Consumer
tests run the consumer-side component against a mocked version of the upstream producer
(not the real producer service) to verify that the consumer can make requests and consume
the expected responses from the producer. We can use tools such as Wiremock to reproduce
HTTP requests.

If both sides of the contract tests pass, the producers and consumers are compatible and
should be able to communicate. Contract tests should always run in continuous integration
to detect incompatibilities before deployment.

You can play with contract testing online in the Pact 5-minute getting started guide. Pact is
a HTTP-based testing tool to write and run consumer- and producer-based contract tests.

4.6.3 Integration tests

Integration tests on microservices work slightly differently than in other architectures. The
goal is to identify interface defects by making microservices interact. Unlike contract tests,
where one side is always mocked, integration tests use real services.

50

https://semaphoreci.com/cicd
https://docs.pact.io/5-minute-getting-started-guide

Integration tests are not interested in evaluating behavior or business logic of a service.
Instead we want to make sure that the microservices can communicate with one another and
their own databases. WeŠre looking for things like missing HTTP headers and mismatched
request/response pairings. And, as a result, integration tests are typically implemented at
the interface level.

Figure 36: Using integration tests to check that the microservices can communicate with
other services, databases, and third party endpoints.

Check out Vitaly BaumŠs post on stubbing microservices to see integration code tests in
action.

4.6.4 Component tests for microservices

A component is a microservice or set of microservices that accomplishes a role within the
larger system.

Component testing is a type of acceptance testing in which we examine the componentŠs
behavior in isolation by substituting services with simulated resources or mocking.

Component tests are more thorough than integration tests because they travel happy and
unhappy paths Ů for instance, how the component responds to simulated network outages
or malformed requests. We want to know if the component meets the needs of its consumer,
much like we do in acceptance or end-to-end testing.

51

https://articles.microservices.com/practical-microservices-integration-tests-and-stub-services-80749ce01050
https://semaphoreci.com/blog/the-benefits-of-acceptance-testing

Figure 37: Component testing performs end-to-end testing to a group of microservices.
Services outside the scope of the component are mocked.

There are two ways of performing component testing: in-process and out-of-process.

4.6.5 In-process component testing

In this subclass of component testing, the test runner exists in the same thread or process
as the microservice. We start the microservice in an Şoffline test modeŤ, where all its
dependencies are mocked, allowing us to run the test without the network.

52

Figure 38: Component test running in the same process as the microservice. The test injects
a mocked service in the adapter to simulate interactions with other components.

In-process testing only works when the component is a single microservice. On a Ąrst glance,
component tests look very similar to end-to-end or acceptance tests. The only difference is
that component tests pick one part of the system (the component) and isolate it from the
rest. The component is thoroughly tested to verify that it performs the functions its users or
consumers need.

Figure 39: Component and end-to-end testing may look similar. But the difference is that
end-to-end tests the complete system (all the microservices) in a production-like environment,
whereas a component does it on an isolated piece of the whole system. Both types of tests
check the behavior of the system from the user (or consumer) perspective, following the
journeys a user would perform.

We can write component tests with any language or framework, but the most popular ones
are probably Cucumber and Capybara.

53

https://semaphoreci.com/community/tutorials/introduction-to-writing-acceptance-tests-with-cucumber
http://teamcapybara.github.io/capybara/

4.6.6 Out-of-process component testing

Out-of-process tests are appropriate for components of any size, including those made up of
many microservices. In this type of testing, the component is deployed Ů unaltered Ů in a
test environment where all external dependencies are mocked or stubbed out.

Figure 40: In this type of component tests the complexity is pushed out into the test
environment, which should replicate the rest of the system.

To round out the concept of contract testing you may explore example code for contract
testing on Java Spring. Also, if you are a Java developer, this post has code samples for
testing Java microservices at every level.

4.6.7 End-to-end testing in microservices

So far, we have tested the system piecemeal. Unit tests were used to test parts of a
microservice, contract tests covered API compatibility, integration tests checked network
calls, and component tests were used to verify a subsystemŠs behavior. Only at the very top
of the automated testing pyramid do we test the entire system.

End-to-end (E2E) testing ensures that the system meets users needs and achieves their
business objectives. The E2E suite should cover all the microservices in the application using
the same interfaces that users wouldŰoften with a combination of UI and API tests.

The application should run in an environment as close as possible to production. Ideally, the
test environment would include all the third-party services that the application usually needs,
but sometimes, these can be mocked to cut costs or prevent abuse.

54

https://dzone.com/articles/component-tests-for-spring-cloud-microservices
https://dzone.com/articles/component-tests-for-spring-cloud-microservices
https://phoenixnap.com/blog/microservices-continuous-testing
https://phoenixnap.com/blog/microservices-continuous-testing

Figure 41: End-to-end are automated tests that simulate user interaction. Only external
third-party services might be mocked.

As depicted by the testing pyramid, E2E tests are the least numerous, which is good because
they are usually the hardest to run and maintain. As long as we focus on the userŠs journeys
and their needs, we can extract a lot of value with only a few E2E tests.

4.7 Changing the testing paradigm

A different paradigm calls for a change in strategies. Testing in a microservice architecture is
more important than ever, but we need to adjust our techniques to Ąt the new development
model. The system is no longer managed by a single team. Instead, every microservice owner
must do their part to ensure that the application works as a whole.

Some organizations might decide that unit, contract, and component tests are enough. Others,
not content without end-to-end and integration testing, may choose to establish a QA team
to facilitate cross-team test coverage.

55

Chapter 5 Ů Running Microservices

A microservice application is a group of distributed programs that communicate over networks,
occasionally interfacing with third-party services and databases. Microservices, by their
networked nature, provide more points of failure than a traditional monolith. As a result of
this, we need a different, broader approach running them.

5.1 Deploying microservices

Processes or containers? Run on my servers or use the cloud? Do I need Kubernetes? When
it comes to the microservice architecture, there is such an abundance of options and it is
hard to know which is best.

As weŠll see, the perfect place to host a microservice application is largely determined by its
size and scaling requirements. So, letŠs go over the Ąve most common ways we can deploy
microservices.

5.2 Ways to deploy microservices

Microservice applications can run in many ways, each with different tradeoffs and cost
structures. What works for small applications spanning a few services will likely not suffice
for large-scale systems.

From simple to complex, here are the Ąve ways of running microservices:

1. Single machine, multiple processes: buy or rent a server and run the microservices
as processes.

2. Multiple machines, multiple processes: the obvious next step is adding more
servers and distributing the load, offering more scalability and availability.

3. Containers: packaging the microservices inside a container makes it easier to deploy
and run along with other services. ItŠs also the Ąrst step towards Kubernetes.

4. Orchestrator: orchestrators such as Kubernetes or Nomad are complete platforms
designed to run thousands of containers simultaneously.

5. Serverless: serverless allows us to forget about processes, containers, and servers, and
run code directly in the cloud.

56

Figure 42: Two paths ahead: one goes from process, to containers, and ultimately, to
Kubernetes. The other goes the serverless route.

LetŠs see each one in more detail.

5.2.1 Single machine, multiple processes

At the most basic level, we can run a microservice application as multiple processes on a
single machine. Each service listens to a different port and communicates over a loopback
interface.

57

Figure 43: The most basic form of microservice deployment uses a single machine. The
application is a group of processes coupled with load balancing.

This simple approach has some clear beneĄts:

• Lightweight: there is no overhead as itŠs just processes running on a server.
• Convenience: itŠs a great way to experience microservices without the learning curve

that other tools have.
• Easy troubleshooting: everything is in the same place, so Ąnding a problem or

reverting to a working conĄguration in case of trouble is very straightforward, if you
have continuous delivery in place.

• Fixed billing: we know how much weŠll have to pay each month.

The DIY approach works best for small applications with only a few microservices. Past that,
it falls short because:

• No scalability: once you max out the resources of the server, thatŠs it.
• Single point of failure: if the server goes down, the application goes down with it.
• Fragile deployment: we need custom deployment and monitoring scripts to ensure

that services are installed and running correctly.
• No resource limits: any microservice process can consume any amount of CPU or

memory, potentially starving other services and leaving the application in a degraded
state.

Continuous integration (CI) for this option will follow the same pattern: build and test the
artifact in the CI pipeline, then deploy with continuous deployment.

58

https://semaphoreci.com/cicd
https://semaphoreci.com/continuous-integration
https://semaphoreci.com/blog/build-stage
https://semaphoreci.com/blog/test-automation
https://semaphoreci.com/blog/cicd-pipeline

Figure 44: Custom scripts are required to deploy the executables built in the CI pipeline.

This is the best option to learn the basics of microservices. You can run a small-scale
microservice application to get familiarized. A single server will take you far until you need
to expand, at which time you can upgrade to the next option.

5.2.2 Multiple machines and processes

This option is essentially an upgrade of option 1. When the application exceeds the capacity
of a server, we can scale up (upgrade the server) or scale sideways (add more servers). In
the case of microservices, horizontally scaling into two or more machines makes more sense
since we get improved availability as a bonus. And, once we have a distributed setup, we can
always scale up by upgrading servers.

59

Figure 45: The load balancer still is a single point of failure. To avoid this, multiple balancers
can run in parallel.

Horizontal scaling is not without its problems, however. Going past one machine poses a
few critical points that make troubleshooting much more complex and typical problems that
come with using the microservice architecture emerge.

• How do we correlate log Ąles distributed among many servers?
• How do we collect sensible metrics?
• How do we handle upgrades and downtime?
• How do we handle spikes and drops in traffic?

These are all problems inherent to distributed computing, and are something that you will
experience (and have to deal with) as soon as more than one machine is involved.

This option is excellent if you have a few spare machines and want to improve your applicationŠs
availability. As long as you keep things simple, with services that are more or less uniform
(same language, similar frameworks), you will be Ąne. Once you pass a certain complexity
threshold, youŠll need containers to provide more Ćexibility.

5.2.3 Deploy microservices with containers

While running microservices directly as processes is very efficient, it comes at a cost.

• The server must be meticulously maintained with the necessary dependencies and tools.

60

• A runaway process can consume all the memory or CPU.
• Deploying and monitoring the microservices is a brittle process.

All these shortcomings can be mitigated with containers. Containers are packages that
contain everything a program needs to run. A container image is a self-contained unit that
can run on any server without having to install any dependencies or tools Ąrst (other than
the container runtime itself).

Containers provide just enough virtualization to run software in isolation. With them, we get
the following beneĄts:

• Isolation: contained processes are isolated from one another and the OS. Each container
has a private Ąlesystem, so dependency conĆicts are impossible (as long as you are not
abusing volumes).

• Concurrency: we can run multiple instances of the same container image without
conĆicts.

• Less overhead: since there is no need to boot an entire OS, containers are much more
lightweight than VMs.

• No-install deployments: installing a container is just a matter of downloading and
running the image. There is no installation step required.

• Resource control: we can put CPU and memory limits on containers so they donŠt
destabilize the server.

Figure 46: Containerized workloads require an image build stage on the CI/CD.

To learn more about containers, check these posts:

• Dockerizing a Node.js Web Application
• Dockerizing a Python Django Web Application
• How To Deploy a Go Web Application with Docker
• Dockerizing a Ruby on Rails Application

We can run containers in two ways: directly on servers or via a managed service.

61

https://semaphoreci.com/community/tutorials/dockerizing-a-node-js-web-application
https://semaphoreci.com/community/tutorials/dockerizing-a-python-django-web-application
https://semaphoreci.com/community/tutorials/how-to-deploy-a-go-web-application-with-docker
https://semaphoreci.com/community/tutorials/dockerizing-a-ruby-on-rails-application

5.2.4 Containers on servers

This approach replaces processes with containers since they give us greater Ćexibility and
control. As with option 2, we can distribute the load across any number of machines.

Figure 47: Wrapping microservices processes in containers make them more portable and
Ćexible.

5.2.5 Serverless containers

All the options described up to this point were based on servers. But software companies
are not in the business of managing servers Ů servers that must be conĄgured, patched,
and upgraded Ů they are in the business of solving problems with code. So, it shouldnŠt be
surprising that many companies prefer to avoid servers whenever possible.

Containers-as-a-Service offerings such as AWS Fargate and Heroku (which unfortunately
discontinued its free plan) make it possible to run containerized applications without having
to deal with servers. We only need to build the container image and point it to the cloud
provider, which will take care of the rest: provision up virtual machines, and download ,
start and monitor images. These managed services typically include a built-in load balancer,
which is one less thing to worry about.

62

https://aws.amazon.com/fargate/
https://www.heroku.com/

Figure 48: Elastic Container Service (ECS) with Fargate allows us to run containers without
having to rent servers. They are maintained by the cloud provider.

Here are some of the beneĄts a managed container service has:

• No servers: there is no need to maintain or patch servers.
• Easy deployment: just build a container image and tell the service to use it.
• Autoscaling: the cloud provider can provide more capacity when demand spikes or

stop all containers when there is no traffic.

Before jumping in, however, you have to be aware of a few signiĄcant downsides:

• Vendor lock-in: this is the big one. Moving away from a managed service is always
challenging, as the cloud vendor provides and controls most of the infrastructure.

• Limited resources: managed services impose CPU and memory limits that cannot
be avoided.

• Less control: we donŠt have the same level of control we get with other options. YouŠre
out of luck if you need functionality that is not provided by the managed service.

Either container option will suit small to medium-sized microservice applications. If youŠre
comfortable with your vendor, a managed container service is easier, as it takes care of a lot
of the details for you.

For large-scale deployments, needless to say, both options will fall short. Once you get
to a certain size, youŠre more likely to have team members that have experience with (or
willingness to learn about) tools such as Kubernetes, which completely change the way
containers are managed.

5.2.6 Orchestrators

Orchestrators are platforms specialized in distributing container workloads over a group of
servers. The most well-known orchestrator is Kubernetes, a Google-created open-source

63

https://kubernetes.io/

project maintained by the Cloud Native Computing Foundation.

Orchestrators provide, in addition to container management, extensive network features like
routing, security, load balancing, and centralized logs Ů everything you may need to run a
microservice application.

Figure 49: Kubernetes uses pods as the scheduling unit. A pod is a group of one or more
containers that share a network address.

With Kubernetes, we step away from custom deployment scripts. Instead, we codify the
desired state with a manifest and let the cluster take care of the rest.

Figure 50: The continuous deployment pipeline sends a manifest to the cluster, which takes
the steps required to fulĄll it.

Kubernetes is supported by all cloud providers and is the de facto platform for microservice
deployment. As such, you might think this is the absolute best way to run microservices. For
many companies, this is true, but theyŠre also a few things to keep in mind:

64

https://www.cncf.io/

• Complexity: orchestrators are known for their steep learning curve. ItŠs not uncommon
to shoot oneself in the foot if not cautious. For simple applications, an orchestrator is
overkill.

• Administrative burden: maintaining a Kubernetes installation requires signiĄcant
expertise. Fortunately, every decent cloud vendor offers managed clusters that take
away all the administration work.

• Skillset: Kubernetes development requires a specialized skillset. It can take weeks to
understand all the moving parts and learn how to troubleshoot a failed deployment.
Transitioning into Kubernetes can be slow and decrease productivity until the team is
familiar with the tools.

Check out deploying applications with Kubernetes in these tutorials:

• A Step-by-Step Guide to Continuous Deployment on Kubernetes
• CI/CD for Microservices on DigitalOcean Kubernetes
• Kubernetes vs. Docker: Understanding Containers in 2022
• Continuous Blue-Green Deployments With Kubernetes

Kubernetes is the most popular option for companies making heavy use of containers. If
thatŠs you, choosing an orchestrator might be the only way forward. Before making the
jump, however, be aware that a recent survey revealed that the greatest challenge for most
companies when migrating to Kubernetes is Ąnding skilled engineers. So if youŠre worried
about Ąnding skilled developers, the next option might be your best bet.

5.2.7 Deploy microservices as serverless functions

Serverless functions deviate from everything else weŠve discussed so far. Instead of servers,
processes, or containers, we use the cloud to simply run code on demand. Serverless offerings
like AWS Lambda and Google Cloud Functions handle all the infrastructure details required
for scalable and highly-available services, leaving us free to focus on coding.

65

https://k8s.af/
https://learnk8s.io/troubleshooting-deployments
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/blog/cicd-microservices-digitalocean-kubernetes
https://semaphoreci.com/blog/kubernetes-vs-docker
https://semaphoreci.com/blog/continuous-blue-green-deployments-with-kubernetes
https://www.containiq.com/post/companies-using-kubernetes
https://juju.is/cloud-native-kubernetes-usage-report-2022#what-are-the-top-challenges-kubernetes-brings-to-businesses
https://aws.amazon.com/lambda/
https://developers.google.com/learn/topics/functions

Figure 51: Serverless functions scale automatically and have per-usage billing.

ItŠs an entirely different paradigm with different pros and cons. On the plus side, we get:

• Ease of use: we can deploy functions on the Ćy without compiling or building container
images, which is great for trying things out and prototyping.

• Easy to scale: you get (basically) inĄnite scalability. The cloud will provide enough
resources to match demand.

• Pay per use: you pay based on usage. If there is no demand, thereŠs no charge.

The downsides, nevertheless, can be considerable, making serverless unsuitable for some types
of microservices:

• Vendor lock-in: as with managed containers, youŠre buying into the providerŠs
ecosystem. Migrating away from a vendor can be demanding.

• Cold starts: infrequently-used functions might take a long time to start. This happens
because the cloud provider spins down the resources attached to unused functions.

• Limited resources: each function has a memory and time limitŰthey cannot be
long-running processes.

• Limited runtimes: only a few languages and frameworks are supported. You might
be forced to use a language that youŠre not comfortable with.

Imprevisible bills: since the cost is usage-based, itŠs hard to predict the size of the invoice
at the end of the month. A usage spike can result in a nasty surprise.

Learn more about serverless below:

• AWS Serverless With Monorepos
• A CI/CD Pipeline for Serverless CloudĆare Workers

Serverless provides a hands-off solution for scalability. Compared with Kubernetes, it doesnŠt
give you as much control, but itŠs easier to work with as you donŠt need specialized skills

66

https://semaphoreci.com/blog/aws-serverless-monorepos
https://semaphoreci.com/blog/cicd-serverless-cloudflare-workers

for serverless. Serverless is an excellent option for small companies that are rapidly growing,
provided they can live with its downsides and limitations.

5.3 Which method is best to deploy microservices?

The best way to run a microservice application is determined by many factors. A single
server using containers (or processes) is a fantastic starting point for experimenting or testing
prototypes.

If the application is mature and spans many services, you will require something more robust
such as managed containers or serverless, and perhaps Kubernetes later on as your application
grows.

Nothing prevents you from mixing and matching different options. In fact, most companies
use a mix of bare-metal servers, VMs, and Kubernetes. A combination of solutions like
running the core services on Kubernetes, a few legacy services in a VM, and reserving
serverless for a few strategic functions could be the best way of taking advantage of the cloud
at every turn.

5.4 Release management for microservices

Imagine a microservices application consisting of dozens of continuously-deployed autonomous
services. Each of the applicationŠs constellation of services has its own repository, with a
different versioning scheme and a different team continually shipping new versions. How can
I tell the (whole) applicationŠs version? Being that the change history is scattered among
dozens of repositories, whatŠs the most efficient approach to keeping track of changes? And
how do we manage application releases?

Any team using microservice architecture, including ours at Semaphore, must deal with these
questions.

5.4.1 A common approach: one microservice, one repository

The most common way to start out with a microservice architecture application is to use the
multirepo approach:

1. Apply Domain-Driven Design to plan how to break up the monolith into services.
2. A separate repository is created for each microservice (where the ŞmultiŤ in multirepo

comes from).
3. Each repository has an independent CI/CD pipeline to continuously deploy the mi-

croservice to production.

LetŠs call this Ąne-grained form of continuous deployment a micro-deployment for lack of a
better term. With micro-deployments, the microservice versions are bumped and deployed
independently, with little need for integration testing.

67

https://juju.is/cloud-native-kubernetes-usage-report-2022#container-and-kubernetes-usage
https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com/cicd

Figure 52: Each microservice has a separate CI/CD pipeline.

Micro-deployment is a side effect of organizing the code into multirepos. For reference, this
is how we currently deploy microservices for Semaphore CI/CD.

5.5 Maintaining multiple microservices releases

Continuous micro-deployments are ideal for hosted apps like NetĆix or Semaphore CI/CD,
where users or customers are unaware of (or uninterested in) individual microservice versions
running behind the scenes.

Things, however, are very different for someone running the same application on-premise.
Continuous deployments donŠt work in this scenario. WeŠre back to release schedules, only in
this case, a release consists of a bundle of microservices pinned at speciĄc versions.

Of course, a private Airbnb doesnŠt make sense, but a private CI/CD platform does. For
instance, you can run a fully-functional version of Semaphore CI/CD behind your Ąrewall
with Semaphore On-Premise.

68

https://semaphoreci.com/enterprise/on-premise

Figure 53: Micro-deployments to the hosted version of the application combined with releases
for the on-premise instances of the product.

The steps needed to release an application organized into multirepos usually go like this:

1. In each repo, tag the versions of microservices that will go into the release.
2. For each microservice, build a Docker image and map the microservice version to the

image tag.
3. Test the release candidate in a separate test environment. This usually involves a mix

of integration testing, acceptance testing, and perhaps some manual testing.
4. Go over every repository and compile a list of changes for the release changelog before

updating the documentation.
5. Identify hotĄxes required for older releases.
6. Publish the release.

Considering that an application can consist of dozens of microservices (and repositories), itŠs
easy to see how releasing this way could entail a lot of repeated admin overhead.

5.6 Managing microservices releases with monorepos

As weŠve seen, multirepos are better suited for continuous deployment than for periodical,
non-continuous releases. So, letŠs see what happens on the other end of the spectrum; when
we gather all the microservices into a shared repository. This is the monorepo approach,
which companies like Google, Airbnb, and Uber have been using for years.

69

Figure 54: A monorepo contains all the microservices and a uniĄed CI/CD deployment
pipeline.

The monorepo strategy makes microservices feel more like a monolith, but in a good way:

• Creating a release is as simple as creating branches and using tags.
• A single CI/CD process standardizes testing and deployment.
• Integration and acceptance testing are a lot easier to implement.
• A single Git history is much clearer to understand, simplifying the process of writing a

changelog and updating documentation.

Figure 55: One CI/CD to rule them all

As always, changing the paradigm involves some tradeoffs:

• Because all changes are committed in one place, the CI server is under more strain. We
can deal with this by using change-based execution or a monorepo-aware tool like Bazel
or Pants.

70

https://docs.semaphoreci.com/essentials/building-monorepo-projects/
https://semaphoreci.com/blog/bazel-build-tutorial-examples
https://semaphoreci.com/blog/building-python-projects-with-pants

• Git has no built-in code protection features. So, if trust is a factor, we should use a
feature like Bitbucket or GitHub CODEOWNERS.

• Finding errors in the CI build can feel overwhelming when the test suite spans many
separate services. Features like test reports can help you identify and analyze problems
at a glance.

• A monorepo CI/CD conĄguration can have a lot of repetitive parts. We can use
environment variables or parametrized pipelines to reduce boilerplate.

5.7 Never too far away from safety

Up to this point, weŠve only focused on the applicationŠs releasability, but there is another
factor that might give monorepos an edge.

Version control not only allows us to collaborate, share knowledge, keep track of the code,
and manage changes, it also provides the ability to recover when something breaks. As long
as we have access to every change in the project, we can always go back.

Multirepos, however, cannot offer a complete picture. There is no record of the relationships
between the microservices, i.e. there is no snapshot of the individual service versions running
in production at any given time. As a result, diagnosing integration issues can be time-
consuming, and there could be instances when Ąxing a problem by rolling back microservices
is impossible.

Figure 56: Multirepos make it challenging to Ąnd the root cause of a failure. ItŠs difficult to
Ąnd the Şlast working microservice conĄgurationŤ.

Monorepos donŠt suffer from this. A monorepo captures the complete snapshot of the system.

71

https://docs.github.com/en/repositories/managing-your-repositories-settings-and-features/customizing-your-repository/about-code-owners
https://semaphoreci.com/product/test-reports

We have all the details needed to return to any point in the projectŠs history. So, weŠll always
be able to Ąnd an appropriate place to retreat to when thereŠs a problem.

Figure 57: A monorepo has all the microservice relationship details needed to go back to any
point in the projectŠs history.

5.8 When in doubt, try monorepos

One pipeline and one repo per microservice? Or one shared repo and a global pipeline for
everything? There is no single best answer that will Ąt every scenario. If your microservices
are loosely coupled, either a multirepo or a monorepo will work perfectly Ąne. Multirepos
require more work but provide more autonomy. However, if your services are somewhat
coupled, itŠs best to make that relationship explicit by using a monorepo. So, when in doubt,
a monorepo can be a safer bet, provided you can live with the tradeoffs.

Continuous micro-deployments have worked well for us at Semaphore, but Semaphore On-
Premise is forcing us to adjust. While the Ąnal solution is still a matter of some debate, it is
almost certain that it will involve migrating the core microservices to a monorepo.

72

Parting Words

Hopefully, by now you have a much better grasp of microservices, what they are, what they
arenŠt, and what a migration from a monolith would entail. This may be the end of the
handbook but certainly not the end of the road. We wish you the best of luck on your
microservice journey!

6.1 Share This Book With The World

Please share this book with your colleagues, friends, and anyone who you think might beneĄt
from it.

Share the book online

6.2 Tell Us What You Think

We would absolutely love to hear your feedback. What did you get out of reading this book?
How easy/hard was it to follow? Is there something that youŠd like to see in a new edition?

This book is open source and available at https://github.com/semaphoreci/book-microser
vices.

• Send comments and feedback, ask questions, and report problems by opening a new
issue.

• Contribute to the quality of this book by submitting pull requests for improvements to
explanations, code snippets, etc.

• Write to us privately at learn@semaphoreci.com.

6.3 About Semaphore

Semaphore https://semaphoreci.com helps developers continuously build, test and deploy
code at the push of a button. It provides the fastest, enterprise-grade CI/CD pipelines as a
serverless service. Trusted by thousands of organizations around the globe, Semaphore can
help your team move faster too.

73

https://semaphoreci.com/resources/microservices?utm_medium=social&utm_source=pdf&utm_campaign=microserviceshandbook
https://github.com/semaphoreci/book-microservices
https://github.com/semaphoreci/book-microservices
https://github.com/semaphoreci/book-microservices/issues
https://github.com/semaphoreci/book-microservices/issues
mailto:learn@semaphoreci.com
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=microserviceshandbook

	Preface
	Who Is This Book for, and What Does It Cover?
	Additional recommended reading
	How to Contact Us
	About the Authors
	About the Editor
	About the Reviewer
	Chapter 1 — What Are Microservices?
	1.1 What is microservice architecture?
	1.2 Microservice vs. monolith architectures
	1.3 Benefits of microservices
	1.3.1 Scalability
	1.3.2 Fault isolation
	1.3.3 Smaller teams
	1.3.4 The freedom to choose the tech stack
	1.3.5 More frequent releases

	1.4 The caveats of microservice design
	1.5 Microservice design challenges
	1.6 Reasons not to migrate to microservices
	1.6.1 Microservices are only viable for mature products
	1.6.2 Microservices are not a good fit for startups
	1.6.3 Microservices aren’t the best for On-Premise installations
	1.6.4 If it’s working, don’t fix it
	1.6.5 Brooke’s Law and developer productivity
	1.6.6 You may not be prepared for the transition

	1.7 Is it the right time for the switch?
	1.8 Revitalizing monoliths
	1.9 The modular monolith as an alternative to microservices
	1.10 Scalable monoliths

	Chapter 2 — How to Restructure Your Organization for Microservices
	2.1 Hierarchical organizations
	2.2 The pod model
	2.3 Ownership is the key
	2.4 Cross-service finger-pointing
	2.5 Pods need support
	2.6 The STOSA model

	Chapter 3 — Design Principles for Microservices
	3.1 What is Domain-Driven Design?
	3.1.1 Bounded Context (BC)
	3.1.2 Context Map

	3.2 Domain-Driven Design for microservices
	3.3 Strategic phase
	3.3.1 Types of relationships

	3.4 Tactical phase
	3.5 Domain-Driven Design is iterative
	3.6 Complementary design patterns

	Chapter 4 — From Monolith to Microservices
	4.1 The single point of fragility
	4.2 Slow development cycles
	4.3 Preparing your monolith for transitioning to microservices
	4.4 A migration plan
	4.4.1 Put everything in a monorepo
	4.4.2 Use a shared CI pipeline
	4.4.3 Ensure you have enough testing
	4.4.4 Install an API Gateway or HTTP Reverse Proxy
	4.4.5 Consider the monolith-in-a-box pattern
	4.4.6 Warm up to changes
	4.4.7 Use feature flags
	4.4.8 Modularize the monolith
	4.4.9 The strangler fig pattern
	4.4.10 The anticorruption layer pattern
	4.4.11 Decouple the data
	4.4.12 Add observability

	4.5 Techniques for testing microservices
	4.6 The testing pyramid for microservices
	4.6.1 Unit tests for microservices
	4.6.2 Contract testing
	4.6.3 Integration tests
	4.6.4 Component tests for microservices
	4.6.5 In-process component testing
	4.6.6 Out-of-process component testing
	4.6.7 End-to-end testing in microservices

	4.7 Changing the testing paradigm

	Chapter 5 — Running Microservices
	5.1 Deploying microservices
	5.2 Ways to deploy microservices
	5.2.1 Single machine, multiple processes
	5.2.2 Multiple machines and processes
	5.2.3 Deploy microservices with containers
	5.2.4 Containers on servers
	5.2.5 Serverless containers
	5.2.6 Orchestrators
	5.2.7 Deploy microservices as serverless functions

	5.3 Which method is best to deploy microservices?
	5.4 Release management for microservices
	5.4.1 A common approach: one microservice, one repository

	5.5 Maintaining multiple microservices releases
	5.6 Managing microservices releases with monorepos
	5.7 Never too far away from safety
	5.8 When in doubt, try monorepos

	Parting Words
	6.1 Share This Book With The World
	6.2 Tell Us What You Think
	6.3 About Semaphore

