
Dockerizing a Python Django Web Application
semaphoreci.com

This article will cover building a markdown editor application written in Django and run-
ning it in the much talked about and discussed Docker. Docker takes all the great as-
pects of a traditional virtual machine, e.g. a self-contained system isolated from your
development machine and removes many of the drawbacks such as system resource
drain, setup time, and maintenance.

When building web applications, you have probably reached a point where you want to
run your application in a fashion that is closer to your production environment. Docker
allows you to set up your application runtime in such a way that it runs in exactly the
same manner as it will in production, on the same operating system, with the same
environment variables, and any other configuration and setup you require.

By the end of the article you’ll be able to:

• Understand what Docker is and how it is used,
• Build a simple Python Django application, and
• Create a simple Dockerfile to build a container running a Django web applica-

tion server.
• Setup a Continuous Integration and Delivery (CI/CD) pipelines to build and test the

Docker image automatically

What is Docker, Anyway?
Docker’s homepage describes Docker as follows:

“Docker is an open platform for building, shipping and running distributed
applications. It gives programmers, development teams, and operations en-
gineers the common toolbox they need to take advantage of the distributed
and networked nature of modern applications.”

Put simply, Docker gives you the ability to run your applications within a controlled en-
vironment, known as a container, built according to the instructions you define. A con-
tainer leverages your machine’s resources much like a traditional virtual machine (VM).
However, containers differ greatly from traditional virtual machines in terms of system
resources. Traditional virtual machines operate using Hypervisors, which manage the

1

https://www.docker.com
https://semaphoreci.com/cicd
https://semaphoreci.com/blog/build-stage

Prerequisites

virtualization of the underlying hardware to the VM. This means they are large in terms
of system requirements.

• Docker doesn’t require the often time-consuming process of installing an entire OS
to a virtual machine such as VirtualBox or VMWare.

• You create a container with a few commands and then execute your applications
on it via the Dockerfile.

• Docker manages the majority of the operating system virtualization for you, so
you can get on with writing applications and shipping them as you require in the
container you have built.

• Dockerfiles can be shared for others to build containers and extend the instruc-
tions within them by basing their container image on top of an existing one.

• The containers are also highly portable and will run in the same manner regardless
of the host OS they are executed on. Portability is a massive plus side of Docker.

Prerequisites
Before you begin this tutorial, ensure the following is installed to your system:

• Python 3.9 or greater,
• Python Pip, the package manager,
• Docker,
• Git and a GitHub account.

Setting Up a Django web application
Let’s jump directly to the application that we’ll dockerize. We’ll start from the Martor
project, which implements a live markdown editor for Django:

• Go to the django-martor-editor repository. And Fork it.

agusmakmun / django-markdown-editor

• Clone the repository to your local machine.

Let’s take a look at the project structure, I’ve omitted some files and folders we won’t be
visiting today:

.
├── requirements.txt # < Python module list
└── martor_demo # < Django Project root

├── app # < App code
│ ├── admin.py
│ ├── apps.py
│ ├── forms.py

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

https://www.python.org
https://pypi.org/project/pip/
https://www.docker.com
https://git-scm.com
https://github.com
https://github.com/agusmakmun/django-markdown-editor
https://github.com/agusmakmun
https://github.com/agusmakmun/django-markdown-editor

Setting Up a Django web application

│ ├── migrations
│ ├── models.py
│ ├── templates
│ ├── urls.py
│ └── views.py
├── manage.py # < Django management tool
└── martor_demo # < Django main settings

├── settings.py
├── urls.py
└── wsgi.py

You can read more about the structure of Django on the official website. You control
the application for development purposes using the manage.py script.

Before we can run it though, we’ll need to download and all the dependencies.

First, create a Python virtual environment:

$ python -m venv venv
$ echo venv/ >> .gitignore
$ source venv/bin/activate

Next, add some of the Python modules we’ll need:

• Gunicorn: gunicorn is an HTTP server. We’ll use it to serve the application inside
the Docker container.

• Martor: Martor is Markdown plugin for Django

$ echo martor >> requirements.txt
$ echo gunicorn >> requirements.txt

Install all the modules using:

$ pip install -r requirements.txt

Push the change to GitHub:

$ git add .gitignore requirements.txt
$ git commit -m "added martor and gunicorn"
$ git push origin master
And start the development server, you can visit your application at http://127.0.0.1:8000:

$ cd martor_demo
$ python manage.py runserver

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

https://www.djangoproject.com
https://docs.python.org/3/library/venv.html
https://gunicorn.org/index.html
https://pypi.org/project/martor/

Setting Up a Django web application

If you check the output of the previous command, you’ll see this message:

You have 18 unapplied migration(s). Your project may not work
properly until you apply the migrations for app(s): admin,
auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.
Django prints this warning because it has detected that the database has not been ini-
tialized.

To initialize a local test database and get rid of the message run:

$ python manage.py makemigrations
$ python manage.py migrate

Testing in Django

In this section, let’s add some tests to the application. Tests are our first line of defense
against bugs.

Django uses the standard Unittest library, so we can get on writing tests right away.

Create a file called app/testPosts.py:

app/testPosts.py

from django.test import TestCase
from app.models import Post

class PostTestCase(TestCase):
def testPost(self):

post = Post(title="My Title", description="Blurb", wiki="Post Body")
self.assertEqual(post.title, "My Title")
self.assertEqual(post.description, "Blurb")
self.assertEqual(post.wiki, "Post Body")

The code is illustrative of a normal unit test:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

https://docs.python.org/3/library/unittest.html

Setting Up a Django web application

• Import the Post model from the application.
• Create a post object with some initial values.
• Check that the values match expectations.

To run the test case:

$ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

Another tests that Django supplies are the deployment checklists. These are scripts that
check for potentially dangerous security settings.

To run the checklist:

$ python manage.py check --deploy

You’ll likely see some warnings. For demo-ing, we can live with the warnings. Once you
go to production, you might want to take a closer look at the messages and what they
mean.

Static vs Dynamic Files

We just need to make one modification before we can continue. Django has the concept
of static files. These are files without any Python code, they are usually images, CSS
stylesheets, or JavaScript.

The distinction between static and dynamic is important once we release to production.
Dynamic files have code that must be evaluated on each request, so they are expensive
to run. Static files don’t need any execution, they don’t need a lot of resources to be
served and can be cached with proxies and CDNs.

To configure the static file location:

• Edit the file martor_demo/settings.py
• Locate the STATIC_ROOT and MEDIA_ROOT variables and replace the lines with

these:

martor_demo/settings.py

. . .

STATIC_ROOT = os.path.join(BASE_DIR, "static")
MEDIA_ROOT = os.path.join(BASE_DIR, "media")

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/static-files/

Style checker

Django collects all static files in one directory:

$ python manage.py collectstatic

Style checker
The final test we’ll do is a style check. Python has strict forms that can be validated using
Flake8, a static analysis tool.

Install and run the tool to check there are no style errors in the project:

$ pip install flake8
$ flake8 . --max-line-length=127

Continuous Integration

Before proceeding, push all modifications to GitHub:

$ git add martor_demo/settings.py app/testPosts.py
$ git add static
$ git commit -m "add unit test and static files"
$ git push origin master

With an initial application and some tests in place, it’s time to focus on using Continuous
Integration (CI) to build and test the code in a clean, reproducible environment.

Setting up a CI/CD pipeline in Semaphore takes only a few minutes, once it’s in place it,
Semaphore will run the tests for you on every update and, if there are no bugs, build
the Docker image automatically.

• Visit Semaphore and sign up for a free account using the Sign up with GitHub
button.

• Click on Create new to add your project from the Git repository.
• Click on Choose next to your repository:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

https://flake8.pycqa.org/en/latest/
https://semaphoreci.com/blog/20-types-of-testing-developers-should-know
https://semaphoreci.com/continuous-integration
https://semaphoreci.com/continuous-integration
https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com

Style checker

• Click on Continue to workflow setup.
• Select the single job templante and click on Customize it first

Figure 1: Customize workflow

This will open the Workflow Builder:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

Style checker

Figure 2: Builder UI overview

The main elements of the builder are:

• Pipeline: a pipeline is made of blocks that are executed from left to right. Pipelines
usually have a specific goal such as building and testing code.

• Block: blocks group jobs that can be executed in parallel. Jobs in a block usually
have similar commands and configurations. Once all job in a block complete, the
next block begins.

• Job: jobs define the commands that do the work. They inherit their configuration
from the parent block.

• Promotions: We can define multiple pipelines and connect them with promotions
to get complex multi-stage workflows.

The first block has to download the Python modules and build the project:

• Click on the first block and set its name to “Build”
• On the job commands block type the following:

sem-version python 3.9
checkout
mkdir .pip_cache
cache restore
pip install --cache-dir .pip_cache -r requirements.txt
cache store

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

https://semaphoreci.com/blog/build-stage
https://semaphoreci.com/blog/revving-up-continuous-integration-with-parallel-testing

Style checker

Figure 3: Build job

• Click on Run the Workflow.
• Set the branch to master.
• Click on Start.

Figure 4: Save your changes

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

Style checker

We have three commands in Semaphore’s built-in toolbox:

• sem-version activates a specific version of one of the supported languages. In the
case of Python, it also setups a virtual environment.

• checkout uses git to clone correct code revision.
• cache stores and restores files in the project-wide cache. Cache can figure out

which files and directories it needs to keep. We can use it to avoid having to down-
load Python packages each time.

The initial CI pipeline will start immediately, a few seconds later it should complete with-
out error:

Build
stage job

Add a second block to run the tests:

1. Click on Edit Workflow.
2. Click on + Add Block.
3. Set the name of the block to “Test”.
4. Open the Prologue section, type the following commands. The prologue is exe-

cuted before each job in the block:

sem-version python 3.9
checkout
cache restore
pip install --cache-dir .pip_cache -r requirements.txt
cd martor_demo
python manage.py makemigrations
python manage.py migrate
python manage.py test

1. Add a second job called “Checklist” and add the following commands:

cd martor_demo
python manage.py check --deploy

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

https://docs.semaphoreci.com/reference/toolbox-reference/
https://docs.semaphoreci.com/programming-languages/python/

Style checker

1. This is a good place to add some style checking. Add a third job called “Style check”
with the following commands. We’re using flake8 to check the style of the code:

pip install flake8
flake8 martor_demo/ --max-line-length=127

Figure 5: Test block

1. Click on Run the Workflow and Start:

Figure 6: CI pipeline

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

http://flake8.pycqa.org/en/latest/

Dockerizing the Application

Dockerizing the Application
You now have a simple web application that is ready to be deployed. So far, you have
been using the built-in development web server that Django ships with.

It’s time to set up the project to run the application in Docker using a more robust web
server that is built to handle production levels of traffic:

• Gunicorn: Gunicorn is an HTTP server for Python. This web server is robust and
built to handle production levels of traffic, whereas the included development
server of Django is more for testing purposes on your local machine only. It will
handle all dynamic files.

• Ngnix: is a general-purpose HTTP server, we’ll use it as a reverse proxy to serve
static files.

On a regular server, setting the application would be hard work; we would need to install
and configure Python and Ngnix, then open the appropriate ports in the firewall. Docker
saves us all this work by creating a single image with all the files and services configured
and ready to use. The image we’ll create can run on any system running Docker.

Installing Docker
One of the key goals of Docker is portability, and as such is able to be installed on a wide
variety of operating systems.

On Windows and OSX install Docker Desktop.

For Linux, Docker is almost universally found in all major distributions.

Writing the Dockerfile
The next stage is to add a Dockerfile to your project. This will allow Docker to build
the image it will execute on the Docker Machine you just created. Writing a Docker-
file is rather straightforward and has many elements that can be reused and/or found
on the web. Docker provides a lot of the functions that you will require to build your im-
age. If you need to do something more custom on your project, Dockerfiles are flexible
enough for you to do so.

The structure of a Dockerfile can be considered a series of instructions on how to
build your container/image. For example, the vast majority of Dockerfiles will begin
by referencing a base image provided by Docker. Typically, this will be a plain vanilla
image of the latest Ubuntu release or other Linux OS of choice. From there, you can
set up directory structures, environment variables, download dependencies, and many
other standard system tasks before finally executing the process which will run your web
application.

Start the Dockerfile by creating an empty file named Dockerfile in the root of
your project. Then, add the first line to the Dockerfile that instructs which base

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

http://gunicorn.org
https://www.docker.com/products/docker-desktop
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Writing the Dockerfile

image to build upon. You can create your own base image and use that for your con-
tainers, which can be beneficial in a department with many teams wanting to deploy
their applications in the same way.

We’ll create the Dockerfile in the root of our project, go one directory up:

$ cd ..

Create a new file called nginx.default. This will be our configuration for nginx. We’ll
listen on port8020, serve the static files from the/opt/app/martor_demo/static
directory and forward the rest of connections to port 8010, where Gunicorn will be
listening:

nginx.default

server {
listen 8020;
server_name example.org;

location / {
proxy_pass http://127.0.0.1:8010;
proxy_set_header Host $host;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
location /static {

root /opt/app/martor_demo;
}

}
Create a server startup script called start-server.sh. This is a Bash script that
starts Gunicorn and Ngnix:

#!/usr/bin/env bash
start-server.sh
if [-n "$DJANGO_SUPERUSER_USERNAME"] \

&& [-n "$DJANGO_SUPERUSER_PASSWORD"] ; then
(cd martor_demo; python manage.py createsuperuser --no-input)

fi
(cd martor_demo; \
gunicorn martor_demo.wsgi \

--user www-data \
--bind 0.0.0.0:8010 \
--workers 3 \

) &
nginx -g "daemon off;"

You then pass thegunicorn command with the first argument of martor_demo.wsgi.
This is a reference to the wsgi file Django generated for us and is a Web Server Gateway
Interface file which is the Python standard for web applications and servers. Without

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

Writing the Dockerfile

delving too much into WSGI, the file simply defines the application variable, and
Gunicorn knows how to interact with the object to start the webserver.

You then pass two flags to the command, bind to attach the running server to port
8020, which you will use to communicate with the running web server via HTTP. Fi-
nally, you specify workers which are the number of threads that will handle the re-
quests coming into your application. Gunicorn recommends this value to be set at (2
x $num_cores) + 1. You can read more on configuration of Gunicorn in their
documentation.

Make the script executable:

$ chmod 755 start-server.sh

Create the Dockerfile:

FROM python:3.9-buster

. . .
It’s worth noting that we are using a base image that has been created specifically to
handle Python 3.9 applications and a set of instructions that will run automatically before
the rest of your Dockerfile.

Next, add the Nginx installation commands and COPY the configuration file inside the
container:

. . .

RUN apt-get update && apt-get install nginx vim -y --no-
install-recommends
COPY nginx.default /etc/nginx/sites-available/default
RUN ln -sf /dev/stdout /var/log/nginx/access.log \

&& ln -sf /dev/stderr /var/log/nginx/error.log

. . .
It’s time to copy the source files and scripts inside the container. We can use the COPY
command to copy files and the RUN command to execute programs on build time.

We’ll also copy the Python packages and install them. Finally, we ensure all the files have
the correct owner:

. . .

RUN mkdir -p /opt/app
RUN mkdir -p /opt/app/pip_cache
RUN mkdir -p /opt/app/martor_demo
COPY requirements.txt start-server.sh /opt/app/

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

http://docs.gunicorn.org/en/stable/design.html

Writing the Dockerfile

COPY .pip_cache /opt/app/pip_cache/
COPY martor_demo /opt/app/martor_demo/
WORKDIR /opt/app
RUN pip install -r requirements.txt --cache-dir /opt/app/pip_cache
RUN chown -R www-data:www-data /opt/app

. . .
The server will run on port 8020. Therefore, your container must be set up to allow
access to this port so that you can communicate to your running server over HTTP. To
do this, use the EXPOSE directive to make the port available:

. . .
EXPOSE 8020
STOPSIGNAL SIGTERM
CMD ["/opt/app/start-server.sh"]
The final part of your Dockerfile is to execute the start script added earlier, which
will leave your web server running on port 8020 waiting to take requests over HTTP.
You can execute this script using the CMD directive.

With all this in place, your final Dockerfile should look something like this:

Dockerfile

FROM python:3.9-buster

install nginx
RUN apt-get update && apt-get install nginx vim -y --no-
install-recommends
COPY nginx.default /etc/nginx/sites-available/default
RUN ln -sf /dev/stdout /var/log/nginx/access.log \

&& ln -sf /dev/stderr /var/log/nginx/error.log

copy source and install dependencies
RUN mkdir -p /opt/app
RUN mkdir -p /opt/app/pip_cache
RUN mkdir -p /opt/app/martor_demo
COPY requirements.txt start-server.sh /opt/app/
COPY .pip_cache /opt/app/pip_cache/
COPY martor_demo /opt/app/martor_demo/
WORKDIR /opt/app
RUN pip install -r requirements.txt --cache-dir /opt/app/pip_cache
RUN chown -R www-data:www-data /opt/app

start server
EXPOSE 8020

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

Building and Running the Container

STOPSIGNAL SIGTERM
CMD ["/opt/app/start-server.sh"]
You are now ready to build the container image, and then run it to see it all working
together.

Building and Running the Container
Building the container is very straight forward once you have Docker on your system.
The following command will look for your Dockerfile and download all the necessary lay-
ers required to get your container image running. Afterward, it will run the instructions
in the Dockerfile and leave you with a container that is ready to start.

To build your container, you will use the docker build command and provide a tag
or a name for the container, so you can reference it later when you want to run it. The
final part of the command tells Docker which directory to build from.

$ mkdir -p .pip_cache
$ docker build -t django-markdown-editor .

In the output, you can see Docker processing each one of your commands before out-
putting that the build of the container is complete. It will give you a unique ID for the
container, which can also be used in commands alongside the tag.

The final step is to run the container you have just built using Docker:

$ docker run -it -p 8020:8020 \
-e DJANGO_SUPERUSER_USERNAME=admin \
-e DJANGO_SUPERUSER_PASSWORD=sekret1 \
-e DJANGO_SUPERUSER_EMAIL=admin@example.com \
django-markdown-editor

Superuser created successfully.
[2022-05-04 17:49:43 +0000] [11] [INFO] Starting gunicorn 20.1.0
[2022-05-04 17:49:43 +0000] [11] [INFO] Listening at: http://0.0.0.0:8010 (11)
[2022-05-04 17:49:43 +0000] [11] [INFO] Using worker: sync
[2022-05-04 17:49:43 +0000] [16] [INFO] Booting worker with pid: 16
[2022-05-04 17:49:43 +0000] [17] [INFO] Booting worker with pid: 17
[2022-05-04 17:49:43 +0000] [18] [INFO] Booting worker with pid: 18

The command tells Docker to run the container and forward the exposed port 8020 to
port 8020 on your local machine. With -e we set environment variables that automati-
cally create an admin user.

After you run this command, you should be able to visit http://localhost:8020 and
http://localhost:8020/admin in your browser to access the application.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

Continuous Deployment

Continuous Deployment
After manually verifying that the application is behaving as expected in Docker, the next
step is the deployment.

We’ll extend our CI Pipeline with a new one that runs the build commands and uploads
the image to Docker Hub.

You’ll need a Docker Hub login to continue:

1. Head to Docker Hub.
2. Use the Get Started button to register.
3. Go back to your Semaphore account.
4. On the left navigation menu, click on Settings under your organization’s menu.

1. Click on Create New Secret.
2. Create a secret called “dockerhub” with the username and password of your

Docker Hub account:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

https://hub.docker.com

Continuous Deployment

Figure 7: Saving the Docker Hub password

1. Click on Save Secret.

Semaphore secrets store your credentials and other sensitive data outside your GitHub
repository and makes them available as environment variables in your jobs when acti-
vated.

Dockerize Pipeline

1. Open the CI pipeline on Semaphore and click on Edit Workflow again.
2. Use the + Add First Promotion dotted button to create a new pipeline connected

to the main one.
3. Call the new pipeline: “Dockerize”
4. Ensure the option Enable automatic promotion is checked so the new pipeline

can start automatically.
5. Click on the first block on the new pipeline. Set its name to “Docker build”.
6. Open the Prologue and type the following commands. The prologue restores the

packages from the cache and prepares the database:

sem-version python 3.9
checkout
cache restore
mkdir -p .pip_cache
pip install --cache-dir .pip_cache -r requirements.txt
cd martor_demo
python manage.py makemigrations
python manage.py migrate
cd ..

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

https://docs.semaphoreci.com/guided-tour/environment-variables-and-secrets/

Continuous Deployment

1. In the job command box type the following commands. The job pulls the latest im-
age (if exists), builds a newer version, and pushes it to Docker Hub. The--cache-
from option tells Docker to try to reuse an older image to speed up the process:

echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" -
-password-stdin
docker pull $DOCKER_USERNAME/django-markdown-editor:latest || true
docker build --cache-from=$DOCKER_USERNAME/django-markdown-
editor:latest -t $DOCKER_USERNAME/django-markdown-editor:latest .
docker push $DOCKER_USERNAME/django-markdown-editor:latest

1. In the Secrets section, check the dockerhub secret
2. Click on Run the workflow and Start.

Figure 8: The final pipeline

The CI/CD pipelines start automatically. Once all tests pass, the Dockerize pipeline will
create a new Docker image and push it to Docker Hub.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

https://semaphoreci.com/blog/make-slow-tests-faster

Next Steps

Figure 9: Dockerized application

You can pull the image to your machine and run it as usual:

$ docker pull YOUR_DOCKER_USERNAME/django-markdown-editor

Next Steps
We’ve prepared a Docker image with everything needed to try out the application. You
can run this image on any machine or cloud service that offers Docker workloads (they
all do).

The next step is to choose a persistent database. Our Docker image uses a local SQLite
file, as a result, each time the container is restarted all data is lost.

The are many options:

• Use a managed database service from a cloud provider.
• Run the database inside a VM.
• Create a second container with the database and use volumes to persist the data.

Regardless of the option you choose, you will have to:

• Configure Django to connect to the database.
• Create a new secret on Semaphore with the database connection password.
• Pass the database connection parameters as environment variables when starting

the Docker container.

Conclusion
In this tutorial, you have learned how to build a simple Python Django web application,
wrap it in a production-grade web server, and created a Docker container to execute

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

Conclusion

your webserver process.

If you enjoyed working through this article, feel free to share it and if you have any ques-
tions or comments leave them in the section below. We will do our best to answer them,
or point you in the right direction.

Having your application running is the first step in the way of Kubernetes. With Kuber-
netes, you can run your applications at scale and provide no-downtime updates:

• Download the ebook: CI/CD for Docker & Kubernetes
• A Step-by-Step Guide to Continuous Deployment on Kubernetes
• Learn how Docker & Kubernetes works in Semaphore
• Continuous Deployment with Google Container Engine and Kubernetes

Next reads:

• Python Continuous Integration and Deployment From Scratch
• Continuous Deployment of a Python Flask Application with Docker and Semaphore
• Lightweight Docker Images in 5 Steps
• Creating a Heroku-like Deployment Solution with Docker

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

https://semaphoreci.com/resources/cicd-docker-kubernetes
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/product/docker
https://semaphoreci.com/community/tutorials/continuous-deployment-with-google-container-engine-and-kubernetes
https://semaphoreci.com/blog/python-continuous-integration-continuous-delivery
https://semaphoreci.com/community/tutorials/continuous-deployment-of-a-python-flask-application-with-docker-and-semaphore
https://semaphoreci.com/blog/2016/12/13/lightweight-docker-images-in-5-steps.html
https://semaphoreci.com/community/tutorials/creating-a-heroku-like-deployment-solution-with-docker

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/community/tutorials/dockerizing-a-
python-django-web-application

Original publication date: 15 Jul 2022

Authors: David Sale

Editor: Marko Anastasov

Reviewed by: Tomas Fernandez

Build date: Aug 2022

Revision: 06632b0

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/community/tutorials/dockerizing-a-python-django-web-application
https://semaphoreci.com/community/tutorials/dockerizing-a-python-django-web-application

	What is Docker, Anyway?
	Prerequisites
	Setting Up a Django web application
	Testing in Django
	Static vs Dynamic Files

	Style checker
	Continuous Integration

	Dockerizing the Application
	Installing Docker
	Writing the Dockerfile
	Building and Running the Container
	Continuous Deployment
	Dockerize Pipeline

	Next Steps
	Conclusion

