
How To Deploy a Go Web Application with Docker
semaphoreci.com

While most Go applications compile to a single binary, web applications also ship with
templates, assets and configuration files; these can get out of sync and cause faulty
deployments.

Docker lets us create a self-contained image with everything our application needs to
work. In this tutorial, you will learn how to deploy a Go web application with Docker, and
how Docker can help improve your development workflow and deployment process.

Goals

By the end of this article, you will:

• Have a basic understanding of Docker,
• Find out how Docker can help you while developing a Go application,
• Learn how to create a Docker container for a Go application for production, and
• Know how to use Continuous Integration and Delivery (CI/CD) to automatically
build a Docker image.

Prerequisites

For this tutorial, you will need:

• Docker installed on your machine.
• A free Docker Hub account.
• A Semaphore account.

You can find all the code for this tutorial in the golang-mathapp repository.

TomFern / golang-mathapp

Understanding Docker
Docker helps you create a single deployable unit for your application. This unit, also
known as a container, has everything the application needs to work. This includes the
code (or binary), the runtime, the system tools and libraries.

1

https://semaphoreci.com/cicd
https://semaphoreci.com/blog/build-stage
https://hub.docker.com
https://semaphoreci.com
https://github.com/TomFern/golang-mathapp
https://github.com/TomFern
https://github.com/TomFern/golang-mathapp

Understanding Docker

Packing all the requirements into a single unit ensures an identical environment for the
application, wherever it is deployed. It also helps tomaintain identical development and
production setups.

Containers also eliminate a whole class of issues caused by files being out of sync or due
to subtle differences in the production environments.

Advantages over Virtual Machines

Containers offer similar resource allocation and isolation benefits as virtual machines.
However, the similarity ends there.

A virtual machine needs its own guest operating system while a container shares the
kernel of the host operating system. This means that containers are much lighter and
need fewer resources. A virtual machine is, in essence, an operating system within an
operating system. Containers, on the other hand, are just like any other application in
the system. Basically, containers need fewer resources (memory, disk space, etc.) than
virtual machines, and have much faster start-up times than virtual machines.

Benefits of Docker During Development

Some of the benefits of using Docker in development include:

• A standard development environment used by all team members,
• Updating dependencies centrally and using the same container everywhere,
• An identical environment in development to that of production, and
• Fixing potential problems that might appear only in production.

Why Use Docker with a Go Web Application?

Most Go applications are simple binaries. This begs the question—why use Docker with
a Go application? Some of the reasons to use Docker with Go include:

• Web applications typically have templates and configuration files. Docker helps
keep these files in sync with the binary.

• Docker ensures identical setups in development and production. There are times
when an application works in development, but not in production. Using Docker
frees you from having to worry about problems like these.

• Machines, operating systems, and installed software can vary significantly across
a large team. Docker provides a mechanism to ensure a consistent development
setup. This makes teams more productive and reduces friction and avoidable is-
sues during development.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

Creating a Simple Go Web Application

Creating a Simple Go Web Application
We’ll create a simple web application in Go for demonstration in this article. This appli-
cation, which we’ll call MathApp, will:

• Expose routes for different mathematical operations,
• Use HTML templates for views,
• Use a configuration file to customize the application, and
• Include tests for selected functions.

Visiting /sum/3/6 will show a page with the result of adding 3 and 6. Likewise, visiting
/product/3/6 will show a page with the product of 3 and 6.
In this article, we used the Beego framework. Note that you can use any framework (or
none at all) for your application.

Final Directory Structure

Upon completion, the directory structure of MathApp will look like:

MathApp
├── Dockerfile
├── Dockerfile.production
└── src

├── conf
│ └── app.conf
├── go.mod
├── go.src
├── main.go
├── main_test.go
├── vendor
└── views

├── invalid-route.html
└── result.html

The main application file is main.go, located at the src directory. This file contains all
the functionality of the app. Some of the functionality from main.go is tested using
main_test.go.
The views folder contains the view files invalid-route.html and result.html.
The configuration file app.conf is placed in the conf folder. Beego uses this file to
customize the application.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

https://semaphoreci.com/blog/unit-testing
https://beego.vip

Creating a Simple Go Web Application

Create the GitHub Repository

We’ll use Go mod, the official module manager, to handle Go modules in a portable way
without having to worry about GOPATH.

We’ll start by creating a GitHub repository and cloning it to your machine.

Use the repository name to initialize the project:

$ mkdir src
$ cd src
$ export GOFLAGS=-mod=vendor
$ export GO111MODULE=on
$ go mod init github.com/YOUR_GITHUB_USER/YOUR_REPOSITORY_NAME
(example: go mod init github.com/tomfern/go-web-docker)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

https://blog.golang.org/using-go-modules

Creating a Simple Go Web Application

From now on, we can use these commands:

$ go mod download
$ go mod vendor
$ go mod verify

Todownload the required dependencies in thevendor/ folder (instead of downloading
them in the GOROOT, this will come in handy later).

Application File Contents

Before continuing, let’s create the file structure:

$ mkdir conf views

The main application file (main.go) contains all the application logic. The contents of
this file are as follows:

// main.go

package main

import (
"strconv"

"github.com/astaxie/beego"
)

func main() {
/* This would match routes like the following:

/sum/3/5
/product/6/23
...

*/
beego.Router("/:operation/:num1:int/:num2:int", &mainController{})
beego.Run()

}

type mainController struct {
beego.Controller

}

func (c *mainController) Get() {

//Obtain the values of the route parameters defined in the route above
operation := c.Ctx.Input.Param(":operation")
num1, _ := strconv.Atoi(c.Ctx.Input.Param(":num1"))
num2, _ := strconv.Atoi(c.Ctx.Input.Param(":num2"))

//Set the values for use in the template

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

Creating a Simple Go Web Application

c.Data["operation"] = operation
c.Data["num1"] = num1
c.Data["num2"] = num2
c.TplName = "result.html"

// Perform the calculation depending on the 'operation' route parameter
switch operation {
case "sum":

c.Data["result"] = add(num1, num2)
case "product":

c.Data["result"] = multiply(num1, num2)
default:

c.TplName = "invalid-route.html"
}

}

func add(n1, n2 int) int {
return n1 + n2

}

func multiply(n1, n2 int) int {
return n1 * n2

}

In your application, this might be split across several files. However, for the purpose of
this tutorial, I like to have everything in one place.

Test File Contents

The main.go file has some functions which need to be tested. The tests for these
functions can be found in main_test.go. The contents of this file are as follows:

// main_test.go

package main

import "testing"

func TestSum(t *testing.T) {
if add(2, 5) != 7 {

t.Fail()
}
if add(2, 100) != 102 {

t.Fail()
}
if add(222, 100) != 322 {

t.Fail()
}

}

func TestProduct(t *testing.T) {
if multiply(2, 5) != 10 {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

Creating a Simple Go Web Application

t.Fail()
}
if multiply(2, 100) != 200 {

t.Fail()
}
if multiply(222, 3) != 666 {

t.Fail()
}

}

Testing your application is particularly useful if you want to do Continuous Deployment.
If you have adequate testing in place, then you can make stress-free deployments any-
time, any day of the week.

View Files Contents

The view files are HTML templates; these are used by the application to display the re-
sponse to a request. The content of views/result.html is as follows:

<!-- views/result.html -->
<!doctype html>
<html>

<head>
<title>MathApp - {{.operation}}</title>

</head>
<body>
The {{.operation}} of {{.num1}} and {{.num2}} is {{.result}}

</body>
</html>
The content of views/invalid-route.html is as follows:

<!-- invalid-route.html -->
<!doctype html>
<html>

<head>
<title>MathApp</title>

<meta name="viewport" content="width=device-
width, initial-scale=1">

<meta charset="UTF-8">
</head>

<body>
Invalid operation

</body>
</html>

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

https://semaphoreci.com/cicd
https://semaphoreci.com/blog/automated-testing-cicd

Using Docker During Development

Configuration File Contents

The conf/app.conf file is read by Beego to configure the application. Its content is
as follows:

appname = mathapp
runmode = "dev"
httpport = 8010
In this file:

• appname: is the name of the process that the application will run as,
• httpport: is the port on which the application will be served, and
• runmode: specifieswhichmode the application should run in. Valid values include
dev for development and prod for production.

Finally, if you haven’t yet done so, install the Go modules with:

$ go mod download
$ go mod vendor
$ go mod verify

Using Docker During Development
This section will explain the benefits of using Docker during development, and walk you
through the steps required to use Docker in development.

Configuring Docker for Development

We’ll use aDockerfile to configure Docker for development. The setup should satisfy
the following requirements for the development environment:

• We will use the application mentioned in the previous section,
• The files should be accessible both from inside and outside of the container,
• We will use the bee tool, this will be used to live-reload the app (inside the Docker
container) during development,

• Docker will expose the application on port 8010,
• In the Docker container, the application is located at /home/app,
• The name of the Docker image we’ll create for development will be mathapp.

Step 1 – Creating the Dockerfile

Go back to the top level of your project:

$ cd ..

The following Dockerfile should satisfy the above requirements.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

Using Docker During Development

FROM golang:1.18-bullseye

RUN go install github.com/beego/bee/v2@latest

ENV GO111MODULE=on
ENV GOFLAGS=-mod=vendor

ENV APP_HOME /go/src/mathapp
RUN mkdir -p "$APP_HOME"

WORKDIR "$APP_HOME"
EXPOSE 8010
CMD ["bee", "run"]
The first line:

FROM golang:1.18-bullseye
References the official image for Go as the base image. This image comes with Go 1.18
pre-installed.

The second line:

RUN go install github.com/beego/bee/v2@latest
Installs the bee tool globally (Docker commands run as root by default), which will be
used to live-reload our code during development.

Next, we configure the environment variables for Go modules:

ENV GO111MODULE=on
ENV GOFLAGS=-mod=vendor
The next lines:

ENV APP_HOME /go/src/mathapp
RUN mkdir -p "$APP_HOME"
WORKDIR "$APP_HOME"
Creates a folder for the code and makes it active.

The next to last line tells Docker that port 8010 is of interest.

EXPOSE 8010
The final line:

CMD ["bee", "run"]
Uses the bee command to start our application.

Step 2 – Building the Image

Once the Docker file is created, run the following command to create the image:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

Using Docker During Development

$ docker build -t mathapp-development .

Executing the above command will create an image named mathapp:
• -t mathapp: sets the tag name for the new image, we can reference the image
later as mathapp:latest

• Don’t forget to type the last dot (.) in the command, otherwise you’ll get an error.

This command can be used by everyone working on this application. This will ensure
that an identical development environment is used across the team.

To see the list of images on your system, run the following command:

$ docker images

Note that the exact names and number of images might vary. However, you should see
at least the golang and mathapp images in the list:

REPOSITORY TAG IMAGE ID CREATED SIZE
golang 1.18 25c4671a1478 2 weeks ago 809MB
mathapp-development latest 8ae092824585 60 seconds ago 838MB

Step 3 – Running the Container

Once you have mathapp, you can start a container with:

$ docker run -it --rm -p 8010:8010 -v $PWD/src:/go/src/mathapp mathapp-development

Let’s break down the above command to see what it does.

• The docker run command is used to run a container from an image,
• The -it flag starts the container in an interactive mode (tie it to the current shell),
• The --rm flag cleans out the container after it shuts down,
• The--name mathapp-instance names the containermathapp-instance,
• The -p 8010:8010 flag allows the container to be accessed at port 8010,
• The -v $PWD/src:/go/src/mathapp is more involved. It maps the src/
directory from the machine to /go/src/mathapp in the container. This makes
the development files available inside and outside the container, and

• The mathapp part specifies the image name to use in the container.

Executing the above command starts the Docker container. This container exposes your
application on port 8010. It also rebuilds your application automatically whenever you
make a change. You should see the following output in your console:

| ___ \
| |_/ / ___ ___
| ___ \ / _ \ / _ \
| |_/ /| __/| __/
____/ ___| ___| v2.0.2

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

Using Docker During Development

2022/05/10 13:39:29 INFO ▶ 0003 Using 'mathapp' as 'appname'
2022/05/10 13:39:29 INFO ▶ 0004 Initializing watcher...
2020/03/17 14:43:24.912 [I] [asm_amd64.s:1373] http server Running on http://:8010
To check the setup, visit http://localhost:8010/sum/4/5 in your browser. You
should see something similar to the following:

Note: This assumes that you’re working on your local machine.

To try the live-reload feature, make amodification in any of the source files. For instance,
edit src/main.go, replace this line:

c.Data["operation"] = operation

To something like this:

c.Data["operation"] = "real " + operation

Bee should pick up the change, even inside the container, and reload the application
seamlessly:

| ___ \
| |_/ / ___ ___
| ___ \ / _ \ / _ \
| |_/ /| __/| __/
____/ ___| ___| v2.0.2
2022/05/10 13:39:29 INFO ▶ 0003 Using 'mathapp' as 'appname'
2022/05/10 13:39:29 INFO ▶ 0004 Initializing watcher...
2022/05/10 13:39:29 INFO. [asm_amd64.s:1373] http server Running on http://:8010

Now reload the page on the browser to see the modified message:

Figure 1: img

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

Using Docker in Production

Using Docker in Production
This section will explain how to deploy a Go application in a Docker container. We will
use Semaphore to do the following:

• Automatically build after changes are pushed to the git repository,
• Automatically run tests,
• Create a Docker image if the build is successful and if the tests pass, and
• Push the Docker image to Docker Hub.

Creating a Dockerfile for Production

We’ll write a newDockerfile to create a complete, self-contained image; without external
dependencies.

Enter the following contents in a new file called Dockerfile.production:
Dockerfile.production

FROM registry.semaphoreci.com/golang:1.18 as builder

ENV APP_HOME /go/src/mathapp

WORKDIR "$APP_HOME"
COPY src/ .

RUN go mod download
RUN go mod verify
RUN go build -o mathapp

FROM registry.semaphoreci.com/golang:1.18

ENV APP_HOME /go/src/mathapp
RUN mkdir -p "$APP_HOME"
WORKDIR "$APP_HOME"

COPY src/conf/ conf/
COPY src/views/ views/
COPY --from=builder "$APP_HOME"/mathapp $APP_HOME

EXPOSE 8010
CMD ["./mathapp"]
Let’s take a detailed look at what each of these commands does. The first command:

FROM registry.semaphoreci.com/golang:1.18 as builder

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

https://semaphoreci.com/blog/build-stage
https://semaphoreci.com/blog/20-types-of-testing-developers-should-know

Using Docker in Production

Tells us this is a multi-stage build; it defines an intermediate image that will only have
one job: compile the Go binary.

You might have noticed that we’re not pulling the image from Docker Hub, the default
image registry. Instead, we’re using the Semaphore Docker Registry, which is more con-
venient, faster, and pulls don’t count against your Docker Hub rate limits.

The following commands:

ENV APP_HOME /go/src/mathapp

WORKDIR "$APP_HOME"
COPY src/ .
Creates the application folder for the app and copies the source code.

The last commands in the intermediate image download the modules and build the ex-
ecutable:

RUN go mod download
RUN go mod verify
RUN go build -o mathapp
Next comes the final and definitive container, where we will run the services.

FROM registry.semaphoreci.com/golang:1.18
We use the COPY command to copy files into the image, the --from argument let us
copy the generated binary from the builder stage.

COPY src/conf/ conf/
COPY src/views/ views/
COPY --from=builder $APP_HOME/mathapp $APP_HOME
We finalize by exposing the port and starting the binary:

EXPOSE 8010
CMD ["./mathapp"]
To build the deployment image:

$ docker build -t mathapp-production -f Dockerfile.production .

You can run it with:

$ docker run -it -p 8010:8010 mathapp-production

Notice that we don’t need to map any directories, as all the source files are included in
the container.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/docker-hub/download-rate-limit/

Push the Code to GitHub

Continuous Integration with Semaphore

Docker is a great solution to package and deploy Go applications. The only downside
is the additional steps required to build and test the image. This hurdle is easily is best
dealt with Continuous Integration and Continuous Delivery (CI/CD).

A Continuous Integration (CI) platform can test our code on every iteration, on every
push and every merge. Developers adopting CI no longer have to fear of merging
branches, nor be anxious about release day. In fact, CI lets developers merge all the
time and make safe releases any day of the week. A good CI setup will run a series of
comprehensive tests, like the ones we prepared so far, to weed out any bugs.

Once the code is ready, we can extend our CI setup with Continuous Delivery (CD). CD
can prepare and build the Docker images, leaving them ready to deploy at any time.

Push the Code to GitHub
Let’s push our modifications to GitHub:

• Open .gitignore and uncomment the vendor/ line, so vendored modules
are not committed:

Dependency directories (remove the comment below to include it)
vendor/

Build artifact
src/mathapp

• Push all the code with git:

$ git add Dockerfile*
$ git add src
$ git add .gitignore
$ git commit -m "initial commit"
$ git push origin master

Adding the Repository to Semaphore

We can add CI to our project for free in just a few minutes:

• Go to Semaphore and sign up using the Sign up with GitHub button. This will link
up both accounts.

• Click on the + Create New to create a new project:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

https://semaphoreci.com/cicd
https://semaphoreci.com/continuous-integration
https://semaphoreci.com/cicd

Push the Code to GitHub

Figure 2: Create new project

• Find your GitHub repository and click on Choose:

Figure 3: Grab your repository

• Select the Go starter workflow. Click on Customize it first:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

Push the Code to GitHub

Figure 4: create a Dockerize Go workflow

You’ll get theWorkflow Editor. Here’s an overview of how it works:

Figure 5: Semaphore workflow editor

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

Push the Code to GitHub

• Pipeline: A pipeline has a specific objective, e.g. building or testing. Pipelines are
made of blocks that are executed from left to right in an agent.

• Agent: The agent is the virtual machine that powers the pipeline. We have three
machine types to choose from. The machine runs an optimized Ubuntu 20.04 im-
age with build tools for many languages.

• Block: blocks group jobs that can be executed in parallel. Jobs in a block usually
have similar commands and configurations. Once all jobs in a block complete, the
next block begins.

• Job: jobs define the commands that do the work. They inherit their configuration
from their parent block.

Coming back to our setup. The started workflow expects the code at the project’s root,
but our code is inside the src directory so we need to make a small modification:

• Click on the Test block.
• On the right side, you’ll find the job’s commands, change them so they look like
this:

sem-version go 1.18
export GO111MODULE=on
export GOPATH=~/go
export PATH=/home/semaphore/go/bin:$PATH
checkout
cd src
go get ./...
go test ./...
go build -v .

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

https://semaphoreci.com/blog/cicd-pipeline
https://docs.semaphoreci.com/ci-cd-environment/machine-types/
https://docs.semaphoreci.com/ci-cd-environment/ubuntu-20.04-image/
https://semaphoreci.com/blog/revving-up-continuous-integration-with-parallel-testing

Push the Code to GitHub

Figure 6: Go test commands

• Click on the Run the Workflow and then on Start to get the pipeline running:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

Enhancing the CI Pipeline

Figure 7: Switching GO version

If all goes well, after a few seconds the job should be completed without errors.

Enhancing the CI Pipeline
In this section, we’ll modify the pipeline so that:

• Go dependencies are cached to having to avoid re-download on each run.
• Tests get their own block so we can scale out testing more easily.

To get started, click on the Edit Workflow button, then:

1. Click on the block. We’ll completely replace its contents.
2. Change the name of the block and the job to “Install”.
3. Type the following content in the Job command box:

sem-version go 1.18
export GO111MODULE=on
export GOPATH=~/go
export PATH=/home/semaphore/go/bin:$PATH
checkout
cd src
cache restore vendor-$SEMAPHORE_GIT_BRANCH-$(checksum go.mod),vendor-$SEMAPHORE_GIT_BRANCH,vendor-master
go mod vendor
cache store vendor-$SEMAPHORE_GIT_BRANCH-$(checksum go.mod),vendor-$SEMAPHORE_GIT_BRANCH,vendor-master vendor

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

https://semaphoreci.com/blog/revving-up-continuous-integration-with-parallel-testing

Enhancing the CI Pipeline

Figure 8: Build code before building a Dockerize Go pipeline

I think this is a good opportunity to learn about the Semaphore toolbox of built-in com-
mands:

• checkout: the checkout commands clones the correct revision of the GitHub
repository and changes the directory. It’s usually the first command in a job.

• sem-version: with sem-version, we can switch the active version of a language.
Semaphore fully supports many languages, including Go.

• cache: the cache is a project file storage. We’ll use the cache to persist the ven-
dor/ directory.

Let’s go back to our pipeline:

1. Use the + Add Block dotted line button to create a new block.
2. Call the block and the job “Test”.
3. Open the Environment Variables section and create the GO111MODULE and
GOFLAGS variables like we did on the previous block.

4. Open the Prologue section, which executed before each job in the block, and type
the following commands:

sem-version go 1.18
export GO111MODULE=on
export GOPATH=~/go
export PATH=/home/semaphore/go/bin:$PATH
checkout

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

https://docs.semaphoreci.com/reference/toolbox-reference/
https://docs.semaphoreci.com/programming-languages/go/

Building the Docker Image

cd src
cache restore vendor-$SEMAPHORE_GIT_BRANCH-$(checksum go.mod),vendor-
$SEMAPHORE_GIT_BRANCH,vendor-master

1. Type the following command in the job:

go test ./...

Figure 9: Test code before building a Dockerize Go pipeline

1. Click on Run the Workflow and Start to try the updated pipeline.

Building the Docker Image
So far all we did enters in the Continuous Integration category, the natural next stage is
to pack the application in a Docker container.

We’ll create a new delivery pipeline to:

• Build a Docker Image with our Go binary and HTML templates.
• Upload the image to Docker Hub so it’s ready for deployment.

First, we have to tell Semaphore how to connect to Docker Hub:

1. On the account menu, click on Settings:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

Building the Docker Image

Figure 10: Settings menu

1. Click on Secrets and then Create New Secret.

2. Create two variables for your Docker Hub username and password:

• DOCKER_USENAME = YOUR DOCKER USERNAME

• DOCKER_PASSWORD = YOU DOCKER PASSWORD

Figure 11: Docker Hub secret to Dockerize Go

1. Click on Save.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

Building the Docker Image

Going back to the pipeline:

1. Click on Edit Workflow.
2. Use the +Add First Promotion button to create a new linked pipeline:

Figure 12: Add a promotion

1. Change the name of the pipeline to “Dockerize”
2. Check Enable automatic promotion. You can set conditions to trigger the

pipeline here:

Figure 13: Dockerize Go promotion

1. Click +Add Block. We’ll call the new block “Build”
2. Open the Secrets section and check the dockerhub box. This will import the vari-

ables we created earlier into the jobs in the block:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 23

Building the Docker Image

Figure 14: New block

1. Type the following commands in the job:

checkout
echo "$DOCKER_PASSWORD" | docker login --username "$DOCKER_USERNAME" --password-stdin
docker pull $DOCKER_USERNAME/mathapp-production:latest
docker build -f Dockerfile.production --cache-from $DOCKER_USERNAME/mathapp-production:latest -t $DOCKER_USERNAME/mathapp-production:latest .
docker push $DOCKER_USERNAME/mathapp-production:latest

Figure 15: Dockerize Go block

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 24

Building the Docker Image

1. Click on Run the Workflow and Start.
2. Once the first two blocks are done, click on the Promote button:

Figure 16: Dockerize Go promotion

Wait a few seconds until the Dockerize pipeline is done:

Figure 17: Dockerize Go application pipeline

Check your Docker Hub repositories, you should find the new image, ready to use:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 25

What’s Next

Figure 18: Dockerize Go application image

Finally, pull and test the new image in your machine:

$ docker pull YOUR_DOCKERHUB_USERNAME/mathapp-production
$ docker run -it -p 8010:8010 YOUR_DOCKERHUB_USERNAME/mathapp-production

What’s Next
Docker opens up the possibilities for deployments:

• Self-hosted: run the image directly on a VM.With some scripting, we can integrate
automatic deployment to your CI/CD setup.

• PaaS: many Platforms-as-a-Service offerings such as Heroku can directly run
Docker containers. For more details, check the links below.

• Kubernetes: with Kubernetes, we can run the application at scale. Kubernetes
brings a lot of features and is supported by almost every cloud provider. Checks
the links below for related tutorials.

Heroku:

• Continuous Deployment of a Python Flask Applicationwith Docker and Semaphore
• Dockerizing a PHP Application

Kubernetes:

• Download our ebook for free: CI/CD with Docker and Kubernetes
• CI/CD for Microservices on DigitalOcean Kubernetes
• A Step-by-Step Guide to Continuous Deployment on Kubernetes

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 26

https://www.heroku.com/
https://semaphoreci.com/community/tutorials/continuous-deployment-of-a-python-flask-application-with-docker-and-semaphore
https://semaphoreci.com/community/tutorials/continuous-deployment-of-a-python-flask-application-with-docker-and-semaphore
https://semaphoreci.com/resources/cicd-docker-kubernetes
https://semaphoreci.com/blog/cicd-microservices-digitalocean-kubernetes
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes

Conclusion

• Continuous Integration and Delivery to AWS Kubernetes

Conclusion
In this tutorial, we learned how to create a Docker container for a Go application and
prepare a Docker container using Semaphore.

You should now be ready to use Docker to simplify the deployment of your next Go
application. If you have any questions, feel free to post them in the comments below.

P.S. Want to continuously deliver your applications made with Docker? Check out
Semaphore’s Docker support.

Read next:

• Dockerizing a Python Django Web Application
• Building Go Web Applications and Microservices Using Gin
• Lightweight Docker Images in 5 Steps

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 27

https://semaphoreci.com/blog/continuous-integration-delivery-aws-eks-kubernetes
https://semaphoreci.com/product/docker
https://semaphoreci.com/community/tutorials/building-and-testing-a-rest-api-in-go-with-gorilla-mux-and-postgresql
https://semaphoreci.com/community/tutorials/building-go-web-applications-and-microservices-using-gin
https://semaphoreci.com/blog/2016/12/13/lightweight-docker-images-in-5-steps.html

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/community/tutorials/how-to-deploy-
a-go-web-application-with-docker

Original publication date: 11 Jul 2022

Authors: Kulshekhar Kabra

Editor: Marko Anastasov

Reviewed by: Tomas Fernandez

Build date: Aug 2022

Revision: 90998f8

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 28

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/community/tutorials/how-to-deploy-a-go-web-application-with-docker
https://semaphoreci.com/community/tutorials/how-to-deploy-a-go-web-application-with-docker

	Goals
	Prerequisites
	Understanding Docker
	Advantages over Virtual Machines
	Benefits of Docker During Development
	Why Use Docker with a Go Web Application?

	Creating a Simple Go Web Application
	Final Directory Structure
	Create the GitHub Repository
	Application File Contents
	Test File Contents
	View Files Contents
	Configuration File Contents

	Using Docker During Development
	Configuring Docker for Development

	Using Docker in Production
	Creating a Dockerfile for Production
	Continuous Integration with Semaphore

	Push the Code to GitHub
	Adding the Repository to Semaphore

	Enhancing the CI Pipeline
	Building the Docker Image
	What's Next
	Conclusion

