
Building and Testing a REST API in Go with Gorilla
Mux and PostgreSQL

semaphoreci.com

This tutorial will illustrate how you can build a REST API backed by PostgreSQL in Go,
using Gorilla Mux for routing. The tutorial will employ test-driven development and will
conclude by explaining how you can continuously test against a database during devel-
opment.

Goals
By the end of this tutorial, you will:

• Become familiar with Gorilla Mux, and
• Learn how to test your application against a database with Continuous Integration
(CI).

Prerequisites
This tutorial assumes:

• Basic familiarity with Go and PostgreSQL, and
• That you have working Go and PostgreSQL installations. You can use Docker to
run a test database easily.

You’ll find the complete code for the demo at this repository.

TomFern / go-mux-api

Introduction to the Application
Before we dive into the details, let’s take a brief look at the sample application we will
be building as part of this tutorial.

1

https://semaphoreci.com/blog/test-driven-development
https://semaphoreci.com/blog/automated-testing-cicd
https://semaphoreci.com/continuous-integration
https://github.com/TomFern/go-mux-api
https://github.com/TomFern
https://github.com/TomFern/go-mux-api

What Will the Application Do?

What Will the Application Do?
The application will be a simple REST API server that will expose endpoints to allow ac-
cessing andmanipulating ‘products’. The operations that our endpoint will allow include:

• Creating a new product,
• Updating an existing product,
• Deleting an existing product,
• Fetching an existing product, and
• Fetching a list of products.

API Specification
In concrete terms, our application should:

• Create a new product in response to a valid POST request at /product,
• Update a product in response to a valid PUT request at /product/{id},
• Delete a product in response to a valid DELETE request at /product/{id},
• Fetch a product in response to a valid GET request at /product/{id}, and
• Fetch a list of products in response to a valid GET request at /products.

The {id} in some of the endpoints above will determine which product the request will
work with.

With these requirements in place, let’s begin designing our application.

Creating the Application Structure
In this section, we will create the minimal application structure which will serve as the
starting point to write tests and develop the application further.

Creating the Database Structure
In this simple application, we will have a single table named products. This table will
have the following fields:

• id – the primary key in this table,
• name – the name of the product and,
• price – the price of the product.

We can use the following SQL statement to create the table:

CREATE TABLE products
(

id SERIAL,
name TEXT NOT NULL,
price NUMERIC(10,2) NOT NULL DEFAULT 0.00,

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

Fetching Dependencies

CONSTRAINT products_pkey PRIMARY KEY (id)
)

This is a minimal and very simplistic table but it should be adequate to help achieve the
goals of this tutorial.

Fetching Dependencies
Before we begin writing our application, we need to fetch two packages that our appli-
cation will depend on:

1. mux – The Gorilla Mux router (also known as “ ”HTTP request multiplexer” ”, which
makes Gorilla one of the most powerful Go libraries) and,

2. pq – The PostgreSQL driver.

Before doing that, let’s create a repository in GitHub to store our code:

• Head over to GitHub and login or signup.
• Create a new repository.
• Select Go as the language
• Get the repository address by clicking on Clone or download.
• Clone the repository to your machine:

$ git clone YOUR_REPO_URL
$ cd YOUR_REPO_DIRECTORY

Initialize the Go modules with your GitHub repository address:

$ go mod init github.com/<your GitHub username>/<project name>

You can fetch the Go modules using the following commands.

$ go get -u github.com/gorilla/mux
$ go get -u github.com/lib/pq

If you use some other mechanism to vendor external dependencies, feel free to fetch
and organize these dependencies in a manner that suits you. For instance, in the Go
reference docs you’ll find an example for using dep.

Scaffolding a Minimal Application
Before we can write tests, we need to create a minimal application that can be used as
the basis for the tests. By the time we’re done with the tutorial, we’ll have the following
file structure.

┌── app.go
├── main.go

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

https://www.scnsoft.com/services/golang
https://github.com
https://github.com/new
https://docs.semaphoreci.com/programming-languages/go/
https://docs.semaphoreci.com/programming-languages/go/
https://github.com/golang/dep

Scaffolding a Minimal Application

├── main_test.go
├── model.go
├── go.sum
└── go.mod
Let’s begin by defining a struct, App, to hold our application:

type App struct {
Router *mux.Router
DB *sql.DB

}

This struct exposes references to the router and the database that the application uses.
To be useful and testable, App will need two methods that initialize and run the applica-
tion.

These methods will have the following signature:

func (a *App) Initialize(user, password, dbname string) { }

func (a *App) Run(addr string) { }

The Initialize method will take in the details required to connect to the database.
It will create a database connection and wire up the routes to respond according to the
requirements.

The Runmethod will simply start the application.

We’ll put this in app.go which should, at this stage, contain the following:

// app.go

package main

import (
"database/sql"

"github.com/gorilla/mux"
_ "github.com/lib/pq"

)

type App struct {
Router *mux.Router
DB *sql.DB

}

func (a *App) Initialize(user, password, dbname string) { }

func (a *App) Run(addr string) { }

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

Scaffolding a Minimal Application

Note that we have imported pq here because we need our application to work with
PostgreSQL.

We’ll also create main.go which will contain the entry point for our application. It
should contain the following code:

// main.go

package main

import "os"

func main() {
a := App{}
a.Initialize(

os.Getenv("APP_DB_USERNAME"),
os.Getenv("APP_DB_PASSWORD"),
os.Getenv("APP_DB_NAME"))

a.Run(":8010")
}

This assumes that youuse environment variablesAPP_DB_USERNAME,APP_DB_PASSWORD,
and APP_DB_NAME to store your database’s username, password, and name respec-
tively.

We’re going to use PostgreSQL default parameters for the purposes of testing:

export APP_DB_USERNAME=postgres
export APP_DB_PASSWORD=
export APP_DB_NAME=postgres

We also need another struct to represent the ‘product’. Let’s define it as follows:

type product struct {
ID int `json:"id"`
Name string `json:"name"`
Price float64 `json:"price"`

}

We can define functions that deal with a single product as methods on this struct, as
follows:

func (p *product) getProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func (p *product) updateProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func (p *product) deleteProduct(db *sql.DB) error {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

Scaffolding a Minimal Application

return errors.New("Not implemented")
}

func (p *product) createProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

We will also define a standalone function that fetches a list of products, as follows:

func getProducts(db *sql.DB, start, count int) ([]product, error) {
return nil, errors.New("Not implemented")

}

Combining all the above code into a single file, model.go, you should have something
similar to the following:

// model.go

package main

import (
"database/sql"
"errors"

)

type product struct {
ID int `json:"id"`
Name string `json:"name"`
Price float64 `json:"price"`

}

func (p *product) getProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func (p *product) updateProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func (p *product) deleteProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func (p *product) createProduct(db *sql.DB) error {
return errors.New("Not implemented")

}

func getProducts(db *sql.DB, start, count int) ([]product, error) {
return nil, errors.New("Not implemented")

}

With this, we are now well placed to begin writing tests.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

Writing Tests Based on the API and Application Requirements

Writing Tests Based on the API and Application Requirements
In this section, we will write tests based on the requirements we laid out earlier.

Setting Up and Cleaning Up the Test Database
Given that we will be running tests against a database, we need to ensure that the
database is properly set up before any tests are run and is cleaned up after all tests
have been finished. We will do this in the TestMain function which is executed be-
fore all other tests, as follows. We’ll assume that the a variable references the main
application:

func TestMain(m *testing.M) {
a.Initialize(

os.Getenv("APP_DB_USERNAME"),
os.Getenv("APP_DB_PASSWORD"),
os.Getenv("APP_DB_NAME"))

ensureTableExists()
code := m.Run()
clearTable()
os.Exit(code)

}

We define a global variable a that will represent the application we want to test.

After initializing the application, we use the ensureTableExists function to make
sure that the table we need for testing is available. This function can be defined as
follows. This function requires importing the logmodule:

func ensureTableExists() {
if _, err := a.DB.Exec(tableCreationQuery); err != nil {

log.Fatal(err)
}

}

tableCreationQuery is a constant, defined as follows:

const tableCreationQuery = `CREATE TABLE IF NOT EXISTS products
(

id SERIAL,
name TEXT NOT NULL,
price NUMERIC(10,2) NOT NULL DEFAULT 0.00,
CONSTRAINT products_pkey PRIMARY KEY (id)

)`

All the tests are executed by calling m.Run() after which we call clearTable() to
clean the database up. This function can be defined as follows:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

Setting Up and Cleaning Up the Test Database

func clearTable() {
a.DB.Exec("DELETE FROM products")
a.DB.Exec("ALTER SEQUENCE products_id_seq RESTART WITH 1")

}

At this stage, main_test.go should contain the following. Note that you need to ref-
erence your module name in this file, so replace the last import as needed.

// main_test.go
package main_test

import (
"os"
"testing"
"log"
"net/http"
"net/http/httptest"
"strconv"
"encoding/json"
"bytes"
"github.com/<github username>/<project name>"

)

var a main.App

func TestMain(m *testing.M) {
a.Initialize(

os.Getenv("APP_DB_USERNAME"),
os.Getenv("APP_DB_PASSWORD"),
os.Getenv("APP_DB_NAME"))

ensureTableExists()
code := m.Run()
clearTable()
os.Exit(code)

}

func ensureTableExists() {
if _, err := a.DB.Exec(tableCreationQuery); err != nil {

log.Fatal(err)
}

}

func clearTable() {
a.DB.Exec("DELETE FROM products")
a.DB.Exec("ALTER SEQUENCE products_id_seq RESTART WITH 1")

}

const tableCreationQuery = `CREATE TABLE IF NOT EXISTS products
(

id SERIAL,
name TEXT NOT NULL,
price NUMERIC(10,2) NOT NULL DEFAULT 0.00,

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

Setting Up and Cleaning Up the Test Database

CONSTRAINT products_pkey PRIMARY KEY (id)
)`

In order to run the tests, we need to implement the Initialize method of App in
app.go, to establish a connection with the database and initialize the router.

Replace the empty Initialize function in app.go with the following code:

func (a *App) Initialize(user, password, dbname string) {
connectionString :=

fmt.Sprintf("user=%s password=%s dbname=%s sslmode=disable",
user, password, dbname)

var err error
a.DB, err = sql.Open("postgres", connectionString)
if err != nil {

log.Fatal(err)
}

a.Router = mux.NewRouter()
}

Note: Unless your editor/IDE is set up to auto import the required dependen-
cies, you will have to manually add the fmt and log packages to the list of
imports.

The current app.go should look like this:

// app.go

package main

import (
"database/sql"
"fmt"
"log"

"github.com/gorilla/mux"
_ "github.com/lib/pq"

)

type App struct {
Router *mux.Router
DB *sql.DB

}

func (a *App) Initialize(user, password, dbname string) {
connectionString :=

fmt.Sprintf("user=%s password=%s dbname=%s sslmode=disable", user, password, dbname)

var err error
a.DB, err = sql.Open("postgres", connectionString)
if err != nil {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

Writing Tests for the API

log.Fatal(err)
}

a.Router = mux.NewRouter()
}

func (a *App) Run(addr string) { }

At this stage, while we don’t have any tests, we should be able to run go test on our
application without encountering any runtime errors.

Before running the test for the first time, ensure you have a running instance of Post-
greSQL. The easiest way of starting a test database instance is with Docker:

$ docker run -it -p 5432:5432 -d postgres

In your project directory, execute the following command:

$ go test -v

Note: As mentioned earlier, we have assumed that the access details for the
database are set up in the aforementioned environment variables.

Executing this command should result in something like the following:

testing: warning: no tests to run
PASS
ok github.com/tomfern/go-mux 0.012s

Writing Tests for the API
Let’s start by testing the response to the /products endpoint with an empty table.
This test can be implemented as follows. We’ll have to add the net/http module for
it to work:

func TestEmptyTable(t *testing.T) {
clearTable()

req, _ := http.NewRequest("GET", "/products", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

if body := response.Body.String(); body != "[]" {
t.Errorf("Expected an empty array. Got %s", body)

}
}

This test deletes all records from the products table and sends a GET request to the
/products endpoint. We use the executeRequest function to execute the request.
We then use thecheckResponseCode function to test that the HTTP response code is

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

Writing Tests for the API

what we expect. Finally, we check the body of the response and test that it is the textual
representation of an empty array.

The executeRequest function can be implemented as follows. This one requires the
net/httptestmodule:

func executeRequest(req *http.Request) *httptest.ResponseRecorder {
rr := httptest.NewRecorder()
a.Router.ServeHTTP(rr, req)

return rr
}

This function executes the request using the application’s router and returns the re-
sponse.

The checkResponseCode function can be implemented as follows:

func checkResponseCode(t *testing.T, expected, actual int) {
if expected != actual {

t.Errorf("Expected response code %d. Got %d\n", expected, actual)
}

}

If you run the tests again now, you should get something like the following:

$ go test -v

=== RUN TestEmptyTable
--- FAIL: TestEmptyTable (0.01s)

main_test.go:73: Expected response code 200. Got 404
main_test.go:58: Expected an empty array. Got 404 page not found

FAIL
exit status 1
FAIL github.com/tomfern/go-mux 0.015s

As expected, the test fails because we haven’t implemented anything yet.

We can implement the rest of the tests in a manner similar to the above test.

1. Fetch a Non-existent Product

The test to check the responsewhen fetching a nonexistent product can be implemented
as follows. This function requires the encoding/jsonmodule:

func TestGetNonExistentProduct(t *testing.T) {
clearTable()

req, _ := http.NewRequest("GET", "/product/11", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusNotFound, response.Code)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

Writing Tests for the API

var m map[string]string
json.Unmarshal(response.Body.Bytes(), &m)
if m["error"] != "Product not found" {

t.Errorf("Expected the 'error' key of the response to be set to 'Product not found'. Got '%s'", m["error"])
}

}

This test tries to access a non-existent product at an endpoint and tests two things:

• That the status code is 404, indicating that the product was not found, and
• That the response contains an error with the message “Product not found”.

2. Create a Product

The test to create a product can be implemented as follows. We’ll need the bytes
module for it:

func TestCreateProduct(t *testing.T) {

clearTable()

var jsonStr = []byte(`{"name":"test product", "price": 11.22}`)
req, _ := http.NewRequest("POST", "/product", bytes.NewBuffer(jsonStr))
req.Header.Set("Content-Type", "application/json")

response := executeRequest(req)
checkResponseCode(t, http.StatusCreated, response.Code)

var m map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &m)

if m["name"] != "test product" {
t.Errorf("Expected name = 'test product'. Got '%v'", m["name"])

}

if m["price"] != 11.22 {
t.Errorf("Expected price = '11.22'. Got '%v'", m["price"])

}

// the id is compared to 1.0 because JSON unmarshaling converts numbers to
// floats, when the target is a map[string]interface{}
if m["id"] != 1.0 {

t.Errorf("Expected ID = '1'. Got '%v'", m["id"])
}

}

In this test, we manually add a product to the database and then access the relevant
endpoint to fetch that product. We then test the following things:

• That the HTTP response has the status code of 201, indicating that a resource was
created, and

• That the response contained a JSON object with contents identical to that of the
payload.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

Writing Tests for the API

3. Fetch a Product

The test to fetch a product can be implemented as follows:

func TestGetProduct(t *testing.T) {
clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)
}

This test simply adds a product to the table and tests that accessing the relevant end-
point results in an HTTP response that denotes success with status code 200.

In this test, we use the addProducts function which is used to add one or more
records into the table for testing. This function can be implemented as follows. It’ll
require the strconvmodule:

func addProducts(count int) {
if count < 1 {

count = 1
}

for i := 0; i < count; i++ {
a.DB.Exec("INSERT INTO products(name, price)

VALUES($1, $2)", "Product "+strconv.Itoa(i), (i+1.0)*10)
}

}

4. Update a Product

The test to update a product can be implemented as follows:

func TestUpdateProduct(t *testing.T) {

clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)
var originalProduct map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &originalProduct)

var jsonStr = []byte(`{"name":"test product - updated name", "price": 11.22}`)
req, _ = http.NewRequest("PUT", "/product/1", bytes.NewBuffer(jsonStr))
req.Header.Set("Content-Type", "application/json")

response = executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

Writing Tests for the API

var m map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &m)

if m["id"] != originalProduct["id"] {
t.Errorf("Expected the id to remain the same (%v).
Got %v", originalProduct["id"], m["id"])

}

if m["name"] == originalProduct["name"] {
t.Errorf("Expected the name to change from '%v' to '%v'.
Got '%v'", originalProduct["name"], m["name"], m["name"])

}

if m["price"] == originalProduct["price"] {
t.Errorf("Expected the price to change from '%v' to '%v'.
Got '%v'", originalProduct["price"], m["price"], m["price"])

}
}

This test begins by adding a product to the database directly. It then uses the end point
to update this record with new details. We finally test the following things:

• That the status code is 200, indicating success, and
• That the response contains the JSON representation of the product with the up-
dated details.

5. Delete a Product

The test to delete a product can be implemented as follows:

func TestDeleteProduct(t *testing.T) {
clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)
checkResponseCode(t, http.StatusOK, response.Code)

req, _ = http.NewRequest("DELETE", "/product/1", nil)
response = executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

req, _ = http.NewRequest("GET", "/product/1", nil)
response = executeRequest(req)
checkResponseCode(t, http.StatusNotFound, response.Code)

}

In this test, we first create a product and test that it exists. We then use the endpoint
to delete the product. Finally we try to access the product at the appropriate endpoint
and test that it doesn’t exist.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

Writing Tests for the API

At this point, main_test.go should look like this:

// main_test.go

package main

import (
"os"
"testing"
"log"

"net/http"
"net/http/httptest"
"bytes"
"encoding/json"
"strconv"

)

var a App

func TestMain(m *testing.M) {
a.Initialize(

os.Getenv("APP_DB_USERNAME"),
os.Getenv("APP_DB_PASSWORD"),
os.Getenv("APP_DB_NAME"))

ensureTableExists()
code := m.Run()
clearTable()
os.Exit(code)

}

func ensureTableExists() {
if _, err := a.DB.Exec(tableCreationQuery); err != nil {

log.Fatal(err)
}

}

func clearTable() {
a.DB.Exec("DELETE FROM products")
a.DB.Exec("ALTER SEQUENCE products_id_seq RESTART WITH 1")

}

const tableCreationQuery = `CREATE TABLE IF NOT EXISTS products
(

id SERIAL,
name TEXT NOT NULL,
price NUMERIC(10,2) NOT NULL DEFAULT 0.00,
CONSTRAINT products_pkey PRIMARY KEY (id)

)`

func TestEmptyTable(t *testing.T) {
clearTable()

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

Writing Tests for the API

req, _ := http.NewRequest("GET", "/products", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

if body := response.Body.String(); body != "[]" {
t.Errorf("Expected an empty array. Got %s", body)

}
}

func executeRequest(req *http.Request) *httptest.ResponseRecorder {
rr := httptest.NewRecorder()
a.Router.ServeHTTP(rr, req)

return rr
}

func checkResponseCode(t *testing.T, expected, actual int) {
if expected != actual {

t.Errorf("Expected response code %d. Got %d\n", expected, actual)
}

}

func TestGetNonExistentProduct(t *testing.T) {
clearTable()

req, _ := http.NewRequest("GET", "/product/11", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusNotFound, response.Code)

var m map[string]string
json.Unmarshal(response.Body.Bytes(), &m)
if m["error"] != "Product not found" {

t.Errorf("Expected the 'error' key of the response
to be set to 'Product not found'. Got '%s'", m["error"])

}
}

func TestCreateProduct(t *testing.T) {

clearTable()

var jsonStr = []byte(`{"name":"test product", "price": 11.22}`)
req, _ := http.NewRequest("POST", "/product", bytes.NewBuffer(jsonStr))
req.Header.Set("Content-Type", "application/json")

response := executeRequest(req)
checkResponseCode(t, http.StatusCreated, response.Code)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

Writing Tests for the API

var m map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &m)

if m["name"] != "test product" {
t.Errorf("Expected product name to be 'test product'.

Got '%v'", m["name"])
}

if m["price"] != 11.22 {
t.Errorf("Expected product price to be '11.22'.

Got '%v'", m["price"])
}

// the id is compared to 1.0 because JSON unmarshaling converts numbers to
// floats, when the target is a map[string]interface{}
if m["id"] != 1.0 {

t.Errorf("Expected product ID to be '1'.
Got '%v'", m["id"])

}
}

func TestGetProduct(t *testing.T) {
clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)
}

// main_test.go

func addProducts(count int) {
if count < 1 {

count = 1
}

for i := 0; i < count; i++ {
a.DB.Exec("INSERT INTO products(name, price) VALUES($1, $2)",

"Product "+strconv.Itoa(i), (i+1.0)*10)
}

}

func TestUpdateProduct(t *testing.T) {

clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

Writing Tests for the API

var originalProduct map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &originalProduct)

var jsonStr = []byte(`{"name":"test product - updated name", "price": 11.22}`)
req, _ = http.NewRequest("PUT", "/product/1", bytes.NewBuffer(jsonStr))
req.Header.Set("Content-Type", "application/json")

response = executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

var m map[string]interface{}
json.Unmarshal(response.Body.Bytes(), &m)

if m["id"] != originalProduct["id"] {
t.Errorf("Expected the id to remain the same (%v).

Got %v", originalProduct["id"], m["id"])
}

if m["name"] == originalProduct["name"] {
t.Errorf("Expected the name to change from '%v' to '%v'.

Got '%v'", originalProduct["name"], m["name"], m["name"])
}

if m["price"] == originalProduct["price"] {
t.Errorf("Expected the price to change from '%v' to '%v'.

Got '%v'", originalProduct["price"], m["price"], m["price"])
}

}

func TestDeleteProduct(t *testing.T) {
clearTable()
addProducts(1)

req, _ := http.NewRequest("GET", "/product/1", nil)
response := executeRequest(req)
checkResponseCode(t, http.StatusOK, response.Code)

req, _ = http.NewRequest("DELETE", "/product/1", nil)
response = executeRequest(req)

checkResponseCode(t, http.StatusOK, response.Code)

req, _ = http.NewRequest("GET", "/product/1", nil)
response = executeRequest(req)
checkResponseCode(t, http.StatusNotFound, response.Code)

}

If you now run go test -v in your project directory, you should get a response similar
to the following:

$ go test -v

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

Adding Application Functionality

=== RUN TestEmptyTable
--- FAIL: TestEmptyTable (0.01s)

main_test.go:75: Expected response code 200. Got 404
main_test.go:60: Expected an empty array. Got 404 page not found

=== RUN TestGetNonExistentProduct
--- FAIL: TestGetNonExistentProduct (0.00s)

main_test.go:91: Expected the 'error' key of the response
to be set to 'Product not found'. Got ''

=== RUN TestCreateProduct
--- FAIL: TestCreateProduct (0.00s)

main_test.go:75: Expected response code 201. Got 404
main_test.go:111: Expected product name to be 'test product'.

Got '<nil>'
main_test.go:115: Expected product price to be '11.22'.

Got '<nil>'
main_test.go:121: Expected product ID to be '1'. Got '<nil>'

=== RUN TestGetProduct
--- FAIL: TestGetProduct (0.01s)

main_test.go:75: Expected response code 200. Got 404
=== RUN TestUpdateProduct
--- FAIL: TestUpdateProduct (0.01s)

main_test.go:75: Expected response code 200. Got 404
main_test.go:175: Expected the name to change from '<nil>' to '<nil>'. Got '<nil>'
main_test.go:179: Expected the price to change from '<nil>' to '<nil>'. Got '<nil>'

=== RUN TestDeleteProduct
--- FAIL: TestDeleteProduct (0.01s)

main_test.go:75: Expected response code 200. Got 404
main_test.go:75: Expected response code 200. Got 404

FAIL
exit status 1
FAIL github.com/tomfern/go-mux 0.066s

At this stage, all of our tests fail becausewe haven’t implemented anything yet. However,
with our tests now in place, we can start implementing the required functionality in our
application.

Adding Application Functionality
In this section, we will complete our application to satisfy the specifications and tests.

Implementing Database Queries

We’ll begin by implementing the methods on product. The implementation is rela-
tively straightforward and just includes issuing queries and returning the results. These
methods can be implemented as follows in model.go:

func (p *product) getProduct(db *sql.DB) error {
return db.QueryRow("SELECT name, price FROM products WHERE id=$1",

p.ID).Scan(&p.Name, &p.Price)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

Adding Application Functionality

}

func (p *product) updateProduct(db *sql.DB) error {
_, err :=

db.Exec("UPDATE products SET name=$1, price=$2 WHERE id=$3",
p.Name, p.Price, p.ID)

return err
}

func (p *product) deleteProduct(db *sql.DB) error {
_, err := db.Exec("DELETE FROM products WHERE id=$1", p.ID)

return err
}

func (p *product) createProduct(db *sql.DB) error {
err := db.QueryRow(

"INSERT INTO products(name, price) VALUES($1, $2) RETURNING id",
p.Name, p.Price).Scan(&p.ID)

if err != nil {
return err

}

return nil
}

Let’s also implement the getProducts function as follows:

func getProducts(db *sql.DB, start, count int) ([]product, error) {
rows, err := db.Query(

"SELECT id, name, price FROM products LIMIT $1 OFFSET $2",
count, start)

if err != nil {
return nil, err

}

defer rows.Close()

products := []product{}

for rows.Next() {
var p product
if err := rows.Scan(&p.ID, &p.Name, &p.Price); err != nil {

return nil, err
}
products = append(products, p)

}

return products, nil
}

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

Adding Application Functionality

This function fetches records from the products table. It limits the number of records
based on the count parameter. The start parameter determines howmany records
are skipped at the beginning. This comes in handy in case you have a lot of records and
want to page through them.

Note: Unless your editor/IDE is set up to manage the dependencies, you will
have to manually remove the errors package from the list of imports in
model.go.

Once the edits are complete, you should find model.go like this:

// model.go

package main

import (
"database/sql"

)

type product struct {
ID int `json:"id"`
Name string `json:"name"`
Price float64 `json:"price"`

}

func (p *product) getProduct(db *sql.DB) error {
return db.QueryRow("SELECT name, price FROM products WHERE id=$1",

p.ID).Scan(&p.Name, &p.Price)
}

func (p *product) updateProduct(db *sql.DB) error {
_, err :=

db.Exec("UPDATE products SET name=$1, price=$2 WHERE id=$3",
p.Name, p.Price, p.ID)

return err
}

func (p *product) deleteProduct(db *sql.DB) error {
_, err := db.Exec("DELETE FROM products WHERE id=$1", p.ID)

return err
}

func (p *product) createProduct(db *sql.DB) error {
err := db.QueryRow(

"INSERT INTO products(name, price) VALUES($1, $2) RETURNING id",
p.Name, p.Price).Scan(&p.ID)

if err != nil {
return err

}

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

Creating Routes and Route Handlers

return nil
}

func getProducts(db *sql.DB, start, count int) ([]product, error) {
rows, err := db.Query(

"SELECT id, name, price FROM products LIMIT $1 OFFSET $2",
count, start)

if err != nil {
return nil, err

}

defer rows.Close()

products := []product{}

for rows.Next() {
var p product
if err := rows.Scan(&p.ID, &p.Name, &p.Price); err != nil {

return nil, err
}
products = append(products, p)

}

return products, nil
}

Creating Routes and Route Handlers
Let’s begin by creating the handler, getProduct, for the route that fetches a single
product. This handler can be implemented as follows in app.go:

func (a *App) getProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid product ID")
return

}

p := product{ID: id}
if err := p.getProduct(a.DB); err != nil {

switch err {
case sql.ErrNoRows:

respondWithError(w, http.StatusNotFound, "Product not found")
default:

respondWithError(w, http.StatusInternalServerError, err.Error())
}
return

}

respondWithJSON(w, http.StatusOK, p)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

Creating Routes and Route Handlers

}

You’ll need to add net/http and strconvmodules to app.go.
This handler retrieves the id of the product to be fetched from the requested URL, and
uses the getProduct method, created in the previous section, to fetch the details of
that product.

If the product is not found, the handler responds with a status code of 404, indicating
that the requested resource could not be found. If the product is found, the handler
responds with the product.

This method uses respondWithError and respondWithJSON functions to pro-
cess errors and normal responses. These functions can be implemented as follows.
They require encoding/json:

func respondWithError(w http.ResponseWriter, code int, message string) {
respondWithJSON(w, code, map[string]string{"error": message})

}

func respondWithJSON(w http.ResponseWriter, code int, payload interface{}) {
response, _ := json.Marshal(payload)

w.Header().Set("Content-Type", "application/json")
w.WriteHeader(code)
w.Write(response)

}

We can implement the rest of the handlers in a similar manner.

1. A handler to fetch a list of products

This handler can be implemented as follows in app.go:

func (a *App) getProducts(w http.ResponseWriter, r *http.Request) {
count, _ := strconv.Atoi(r.FormValue("count"))
start, _ := strconv.Atoi(r.FormValue("start"))

if count > 10 || count < 1 {
count = 10

}
if start < 0 {

start = 0
}

products, err := getProducts(a.DB, start, count)
if err != nil {

respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusOK, products)
}

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 23

Creating Routes and Route Handlers

This handler uses the count and start parameters from the querystring to fetch
count number of products, starting at position start in the database. By default,
start is set to 0 and count is set to 10. If these parameters aren’t provided, this
handler will respond with the first 10 products.

2. A handler to create a product

This handler can be implemented as follows:

func (a *App) createProduct(w http.ResponseWriter, r *http.Request) {
var p product
decoder := json.NewDecoder(r.Body)
if err := decoder.Decode(&p); err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid request payload")
return

}
defer r.Body.Close()

if err := p.createProduct(a.DB); err != nil {
respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusCreated, p)
}

This handler assumes that the request body is a JSON object containing the details of
the product to be created. It extracts that object into a product and uses the cre-
ateProductmethod to create a product with these details.

3. A handler to update a product

This handler can be implemented as follows:

func (a *App) updateProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid product ID")
return

}

var p product
decoder := json.NewDecoder(r.Body)
if err := decoder.Decode(&p); err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid resquest payload")
return

}
defer r.Body.Close()
p.ID = id

if err := p.updateProduct(a.DB); err != nil {
respondWithError(w, http.StatusInternalServerError, err.Error())

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 24

Creating Routes and Route Handlers

return
}

respondWithJSON(w, http.StatusOK, p)
}

Similar to the previous handler, this handler extracts the product details from the re-
quest body. It also extracts theid from the URL and uses theid and the body to update
the product in the database.

4. A handler to delete a product

This handler can be implemented as follows:

func (a *App) deleteProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid Product ID")
return

}

p := product{ID: id}
if err := p.deleteProduct(a.DB); err != nil {

respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusOK, map[string]string{"result": "success"})
}

This handler extracts the id from the requested URL and uses it to delete the corre-
sponding product from the database.

With the handlers created, we can now define the routes that will use them, as follows:

func (a *App) initializeRoutes() {
a.Router.HandleFunc("/products", a.getProducts).Methods("GET")
a.Router.HandleFunc("/product", a.createProduct).Methods("POST")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.getProduct).Methods("GET")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.updateProduct).Methods("PUT")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.deleteProduct).Methods("DELETE")

}

As you can see, the routes are defined based on the specification we created earlier. For
example, we use the a.getProducts handler to handle GET requests at the /prod-
ucts endpoint.

Similarly, we use the a.deleteProduct handler to handle a DELETE request at the
/product/{id} endpoint. The {id:[0-9]+} part of the path indicates that Gorilla
Mux should treat process a URL only if the id is a number. For all matching requests,

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 25

Creating Routes and Route Handlers

GorillaMux then stores the actual numeric value in theid variable. This can be accessed
in the handler as seen above, in the handlers.

All that is left now is to implement the Runmethod and call initializeRoutes from
the Initializemethod. This can be implemented as follows:

func (a *App) Initialize(user, password, dbname string) {
connectionString :=

fmt.Sprintf("user=%s password=%s dbname=%s sslmode=disable",
user, password, dbname)

var err error
a.DB, err = sql.Open("postgres", connectionString)
if err != nil {

log.Fatal(err)
}

a.Router = mux.NewRouter()

a.initializeRoutes()
}

func (a *App) Run(addr string) {
log.Fatal(http.ListenAndServe(":8010", a.Router))

}

The final version of app.go should contain the following code:

// app.go

package main

import (
"database/sql"
"fmt"
"log"

"net/http"
"strconv"
"encoding/json"

"github.com/gorilla/mux"
_ "github.com/lib/pq"

)

type App struct {
Router *mux.Router
DB *sql.DB

}

func (a *App) Initialize(user, password, dbname string) {
connectionString :=

fmt.Sprintf("user=%s password=%s dbname=%s sslmode=disable",

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 26

Creating Routes and Route Handlers

user, password, dbname)

var err error
a.DB, err = sql.Open("postgres", connectionString)
if err != nil {

log.Fatal(err)
}

a.Router = mux.NewRouter()

a.initializeRoutes()
}

func (a *App) Run(addr string) {
log.Fatal(http.ListenAndServe(":8010", a.Router))

}

func (a *App) getProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid product ID")
return

}

p := product{ID: id}
if err := p.getProduct(a.DB); err != nil {

switch err {
case sql.ErrNoRows:

respondWithError(w, http.StatusNotFound, "Product not found")
default:

respondWithError(w, http.StatusInternalServerError, err.Error())
}
return

}

respondWithJSON(w, http.StatusOK, p)
}

func respondWithError(w http.ResponseWriter, code int, message string) {
respondWithJSON(w, code, map[string]string{"error": message})

}

func respondWithJSON(w http.ResponseWriter, code int, payload interface{}) {
response, _ := json.Marshal(payload)

w.Header().Set("Content-Type", "application/json")
w.WriteHeader(code)
w.Write(response)

}

func (a *App) getProducts(w http.ResponseWriter, r *http.Request) {
count, _ := strconv.Atoi(r.FormValue("count"))

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 27

Creating Routes and Route Handlers

start, _ := strconv.Atoi(r.FormValue("start"))

if count > 10 || count < 1 {
count = 10

}
if start < 0 {

start = 0
}

products, err := getProducts(a.DB, start, count)
if err != nil {

respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusOK, products)
}

func (a *App) createProduct(w http.ResponseWriter, r *http.Request) {
var p product
decoder := json.NewDecoder(r.Body)
if err := decoder.Decode(&p); err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid request payload")
return

}
defer r.Body.Close()

if err := p.createProduct(a.DB); err != nil {
respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusCreated, p)
}

func (a *App) updateProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid product ID")
return

}

var p product
decoder := json.NewDecoder(r.Body)
if err := decoder.Decode(&p); err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid resquest payload")
return

}
defer r.Body.Close()
p.ID = id

if err := p.updateProduct(a.DB); err != nil {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 28

Running the Tests

respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusOK, p)
}

func (a *App) deleteProduct(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
id, err := strconv.Atoi(vars["id"])
if err != nil {

respondWithError(w, http.StatusBadRequest, "Invalid Product ID")
return

}

p := product{ID: id}
if err := p.deleteProduct(a.DB); err != nil {

respondWithError(w, http.StatusInternalServerError, err.Error())
return

}

respondWithJSON(w, http.StatusOK, map[string]string{"result": "success"})
}

func (a *App) initializeRoutes() {
a.Router.HandleFunc("/products", a.getProducts).Methods("GET")
a.Router.HandleFunc("/product", a.createProduct).Methods("POST")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.getProduct).Methods("GET")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.updateProduct).Methods("PUT")
a.Router.HandleFunc("/product/{id:[0-9]+}", a.deleteProduct).Methods("DELETE")

}

Running the Tests
With the application functionality implemented, we can now run the tests again:

$ go test -v

This should result in all tests passing, as follows:

=== RUN TestEmptyTable
--- PASS: TestEmptyTable (0.01s)
=== RUN TestGetNonExistentProduct
--- PASS: TestGetNonExistentProduct (0.00s)
=== RUN TestCreateProduct
--- PASS: TestCreateProduct (0.01s)
=== RUN TestGetProduct
--- PASS: TestGetProduct (0.01s)
=== RUN TestUpdateProduct
--- PASS: TestUpdateProduct (0.01s)
=== RUN TestDeleteProduct

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 29

Setting Up Continuous Integration with Semaphore

--- PASS: TestDeleteProduct (0.01s)
PASS
ok github.com/tomfern/go-mux 0.071s

Setting Up Continuous Integration with Semaphore
Continuous Integration (CI) is a technique to speed up development cycles. By estab-
lishing a short feedback cycle that continually tests each code update, errors can be
detected as soon as they appear, teams can safely merge more often.

Continuous Integration doesn’t need to be complex or expensive to use. In this section,
we’ll learn how to set it up for free in a few minutes with Semaphore.

Add Your Repository to Semaphore

To install a CI/CD Pipeline in your repository, follow these steps:

• Go to Semaphore and sign up for a free account using the Sign up with GitHub
button.

• Click on the + Create new to add your project to Semaphore.
• Find your repository on the list and click on Choose:

• Select the Go starter workflow and click on Customize it first:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 30

https://semaphoreci.com/continuous-integration
https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com

Setting Up Continuous Integration with Semaphore

When we choose to customize, Semaphore brings up the Workflow Editor which has
the following elements:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 31

Setting Up Continuous Integration with Semaphore

• Pipeline: A pipeline fulfills a specific objective, e.g testing, and organizes the exe-
cution flow. Pipelines are made of blocks that are executed from left to right.

• Agent: The agent is the virtual machine that powers the pipeline. We have three
machine types to choose from. The machine runs an optimized Ubuntu 18.04 im-
age with build tools for many languages.

• Block: a block is a group of similar jobs that can share commands and configura-
tions. Jobs within a block are executed in parallel. Once all jobs in a block are done,
the next block begins.

• Job: jobs define the commands that do the work. They inherit their config from
the parent block.

We need to make a single modification to the starter workflow:

• Click on the Test block.
• On the right side, you’ll find the Job command box. Add the following line at the
beginning:

sem-service start postgres

• Let’s use Go version 1.16. Change the second line to: sem-version go 1.16
• And load the test environment variables. Add following line after checkout:
source env-sample

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 32

https://docs.semaphoreci.com/ci-cd-environment/machine-types/
https://docs.semaphoreci.com/ci-cd-environment/ubuntu-18.04-image/

Setting Up Continuous Integration with Semaphore

The complete job should look like:

sem-service start postgres
sem-version go 1.16
export GO111MODULE=on
export GOPATH=~/go
export PATH=/home/semaphore/go/bin:$PATH
checkout
source env-test
go get ./…
go test ./…
go build -v .

• Click on Run the Workflow and then on Start:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 33

Setting Up Continuous Integration with Semaphore

That’s all, Semaphore will start to run the pipeline immediately:

• Start a test PostgreSQL instance.
• Download the Go modules.
• Run the test code.

In a few seconds we should have the results of the tests:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 34

Setting Up Continuous Integration with Semaphore

Improving the Pipeline

The starter pipeline does a good job of testing the code. However, it’smeant as a starting
point, not as a final destination. We canmake the pipeline perform and scale better with
only a few modifications:

• Cachemodules: right now, the Gomodules are re-downloaded and installed each
run. We can avoid this by adding a cache.

• Separate blocks: we should split the download and the test stages into two sepa-
rate blocks. That way, when there’s an error, we can better pinpoint where is the
problem.

• Build: we can compile the program in the pipeline and save it in the artifact stor-
age.

But first, let’s examine some of the built-in commands Semaphore provides:

• checkout: the checkout commands clones the correct revision of the GitHub
repository and changes the directory. It’s usually the first command in a job.

• sem-version: with sem-version, we can switch the active version of a language.
Semaphore fully supports many languages, including Go.

• cache: the cache commands provides read andwrite access to Semaphore’s cache,
a project-wide storage for the jobs.

• sem-service: this tool can start several database instances and other services.
Check out the managing servicespage to find which services are supported. We
can start a PostgreSQL database with a single command:

sem-service start postgres 11

So, let’s put these command to work:

• Click on the Edit Workflow button to bring up the Workflow Editor again:

• Change the name of the block to “Install”.

• Change the name of the job to “Download modules”.

• Open the

Environment Variables

section on the right. Create the following variables. These variables tell Go to store
the modules in the local directory instead of in GOPATH.

– GO111MODULE = on
– GOFLAGS = -mod=vendor

• Wipe out the contents of the job command box and type this:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 35

https://semaphoreci.com/blog/build-stage
https://semaphoreci.com/blog/build-stage
https://docs.semaphoreci.com/reference/toolbox-reference/
https://docs.semaphoreci.com/ci-cd-environment/sem-service-managing-databases-and-services-on-linux/

Setting Up Continuous Integration with Semaphore

sem-version go 1.16
checkout
cache restore
go mod vendor
cache store

As you can see, the first block only takes cares of downloading the modules to the ven-
dor/ directory (go mod vendor) and storing them in the cache.

The next block runs the tests:

• Click on the +Add Block dotted line button to create a new block.
• Call the block and the job “Test”.
• Open Environment Variables and createGO111MODULE andGOFLAGS variables
same as before.

• Open the Prologue and type the following commands. The prologue is executed
before each job in the block:

sem-version go 1.13
sem-service start postgres
checkout
cache restore
go mod vendor
source env-sample

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 36

Setting Up Continuous Integration with Semaphore

• Type the following command in the command box:

go test ./...

The final block builds the Go executable:

• Add a new block.
• Call the block and the job “Build”.
• Repeat the Environment Variables and the Prologue steps from the previous
block.

• Type the following command in the box. The artifact command lets us store and
retrieve files in one of the project’s artifact storage.

go build -v -o go-mux.bin
artifact push project --force go-mux.bin

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 37

https://docs.semaphoreci.com/essentials/artifacts/

Setting Up Continuous Integration with Semaphore

• Click on Run the Workflow and then Start.

The pipeline should be complete in a few minutes:

Navigate to the top level of the project to find the Project Artifacts button:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 38

Conclusion

You should find the compiled binary there:

Good job! Now you can work on the project with the confidence that Semaphore is
continually testing your code.

NB: Semaphore also has a neat Test Reports feature that allows you to see which test
have failed, find the slowest tests in your test suite, and find skipped tests. Read more
about the feature and how it can help your team.

Conclusion
This tutorial illustrated how you can use Gorilla Mux and Postgres to build a REST API
with Go. We also saw how you can use Semaphore to continuously test your application
against a live PostgreSQL database.

If you have any questions and comments, feel free to leave them in the section below.

Read also:

• Revving up Continuous Integration with Parallel Testing
• 20 Types of Tests Every Developer Should Know
• [Podcast] Mapping the World and Testing Against Reality

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 39

https://semaphoreci.com/blog/test-reports
https://semaphoreci.com/blog/revving-up-continuous-integration-with-parallel-testing
https://semaphoreci.com/blog/20-types-of-testing-developers-should-know
https://semaphoreci.com/blog/mapping-the-world-and-testing-against-reality

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/community/tutorials/building-and-
testing-a-rest-api-in-go-with-gorilla-mux-and-postgresql

Original publication date: 21 Jul 2022

Authors: Kulshekhar Kabra

Editor: Marko Anastasov

Reviewed by: Tomas Fernandez

Build date: Aug 2022

Revision: 06632b0

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 40

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/community/tutorials/building-and-testing-a-rest-api-in-go-with-gorilla-mux-and-postgresql
https://semaphoreci.com/community/tutorials/building-and-testing-a-rest-api-in-go-with-gorilla-mux-and-postgresql

	Goals
	Prerequisites
	Introduction to the Application
	What Will the Application Do?
	API Specification
	Creating the Application Structure
	Creating the Database Structure
	Fetching Dependencies
	Scaffolding a Minimal Application
	Writing Tests Based on the API and Application Requirements
	Setting Up and Cleaning Up the Test Database
	Writing Tests for the API
	Adding Application Functionality
	Implementing Database Queries

	Creating Routes and Route Handlers
	Running the Tests
	Setting Up Continuous Integration with Semaphore
	Add Your Repository to Semaphore
	Improving the Pipeline

	Conclusion
	Read also:

