
A First Look at Bun
semaphoreci.com

Bun is a new and ambitious JavaScript toolset and runtime. Early adopters have been
reporting that Bun is incredibly fast. So fast that it has been touted by some as a Node.js
killer. Curious, I decided to check out Bun for myself and benchmark it against the com-
petition.

Is it as fast as people are saying? How stable is it? Is it really better than Node? And can
I use it with continuous integration?

What is Bun?
Bun is the newest addition to the JavaScript runtime family. It has been making waves
that rival those made by Deno when it came out in 2018. Bun sits in the space between
Node andDeno. Bun, likeDeno, supports TypeScript out of the box andoffers developer-
friendly features such as top-level awaits and built-in Web APIs. But, unlike Deno, Bun
is intended to be a drop-in replacement for Node, Webpack, Babel, Yarn, and PostCSS
— all in one neat package.

Figure 1: Plus, it has a really cute mascot

Bun is released with an MIT and LGPL2 License (due to JavaScriptCore) and, at the time
of writing, is on version v0.1.4.

How does bun compare to Deno and Node?
While Bun is inspired by Node and Deno, it is also clearly attempting to improve devel-
opment experience and productivity by providing a batteries-included toolset.

1

https://semaphoreci.com/continuous-integration
https://deno.land/

How does bun compare to Deno and Node?

Bun takes features from Deno, like shipping as a single binary and having native Type-
Script support.

Feature Bun Deno

TypeScript/TSX/JSX support Yes Yes
Single executable Yes Yes
Built-in test runner Yes (in development) Yes
Built-in Web APIs (fetch, WebSocket, etc.) Yes Yes
Top-level awaits Yes Yes
npm compatibility Yes No
No compatibility Yes Partial
tsconfig.json support Yes No
WebAssembly support No Yes
Built-in linter & formatter No Yes
Permission system No Yes
Package manifest format package.json N/A
Module support ES Modules, CommonJS ES Modules
License MIT, LGPL2 MIT
JS Engine JavaScriptCore V8
Language Zig, C++ Rust, Tokio

Compared to Node, Bun offers more features while striving to still be compatible:

Feature Bun Node

npm compatibility Yes Yes
Node compatibility Yes (beta) Yes
Single binary Yes No
Built-in bundler & transpiler Yes No
Native TypeScript support Yes No
Package manifest format package.json package.json
Lockfile format Binary JSON
Native live-reload Yes No
Built-in .env, .toml support Yes No
Top-level Awaits Yes Only on ES Modules
JS Engine JavaScriptCore V8
Languages Zig, C++ C, C++
License MIT, LGPL2 MIT, BSD

Being in the beta stage, however, means that Bun still has some quirks:

• Documentation is limited, but Bun’s Discord is very active and a great source of
knowledge.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

https://github.com/oven-sh/bun/issues/798
https://discord.com/invite/CXdq2DP29u

Is it really that fast?

• No native Windows support (works with WSL, though).
• Bun can get stuck while installing packages, fetch is not reliable, and, although it
never happened to me, Bun can occasionally segfault.

• Bun is not 100% compatiblewithNode yet. Not every npmpackageworks. Express,
for instance, is not yet functional.

• Publishing to the npm registry does not work.
• Various breaking changes will occur before the APIs and the CLI are stable.

Bun has a few distinct quality-of-life characteristics of its own:

• Fast built-in sqlite3 module (MySQL and PostgreSQL are also planned).
• Out-of-the-box .env, .toml, and CSS support (no extra loaders required).
• Built-in framework support and optimizations for React and Next.js
• Built-in Foreign Functions Interface (FFI) for low-level calls to ABI-supporting lan-
guages such as C, Rust, or Kotlin.

• Option to copy errors as Markdown (for rapid sharing).

Is it really that fast?
Bun was born out of Jarred Sumner’s frustration with the speed, or lack thereof, of a
language: “I’ve been so frustrated by how slow everything in JavaScript is. I know JavaScript
can be a lot faster”. As a former frontend developer at Stripe, Jarred knows how a fast
iteration cycle is essential for productivity.

Developer experiencematters. As a result, Bun’s speed is not limited to serving requests
faster than other runtimes, but alsomeans that it is faster at installing packages, running
tests, bundling, and transpiling.

Let’s run a few tests to see how Bun actually performs.

Benchmarking Bun
Bun’s homepage reports 3 and 4 times improved performance when compared against
Deno and Node. Those are impressive numbers that I want to check for myself, so let’s
run a few benchmarks across different categories: - Bun vs. npm as a package manager.
- Bun vs. npm as a script runner. - Bun vs. npm for CI/CD workflows. - Bun vs. Node
vs. Deno for copying large files. - Bun vs. Node vs. Deno for serving HTTP requests.

In this instance, we’re going to benchmark:

• Node.js v16.16.0
• npm v8.11.0
• Deno v1.23.4
• Bun v0.1.4

These are the tools I used for benchmarking: - oha: v0.5.3 - hyperfine: v1.14.0 -
Semaphore CI/CD: running tests on e1-standard-2 and Ubuntu 20.04. - MacBook Pro

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

https://thenewstack.io/meet-bun-a-javascript-runtime-for-the-whole-dev-lifecycle/
https://nodejs.org/en/
https://www.npmjs.com/
https://deno.land/
https://bun.sh/
https://github.com/hatoo/oha
https://github.com/sharkdp/hyperfine
https://semaphoreci.com/
https://docs.semaphoreci.com/ci-cd-environment/machine-types/

Managing packages with Bun

M1 2020, MacOS 12.4

You can see the scripts used for each case here: https://github.com/TomFern/benchmarks-
javascript

I’ll try to compare Bun, Deno, and Node directly when possible. However, Deno was
never intended as a drop-in replacement for Node, so it won’t be able to participate in
all tests.

Managing packages with Bun
In this first test, we’ll compare how Bun fares against npm for creating new projects. As
you can see below, npm takes 49 seconds to create an empty React App.

$ time npx create-react-app myapp

Creating a new React app in /code/myapp.

Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts with cra-template...

added 1392 packages in 38s

16.50s user 6.33s system 46% cpu 49.016 total

Bun ships with the bun create command capable of doing the same:

$ time bun create react myapp2
[package.json] Detected React - added "react-refresh"

bun install v0.1.4
Resolving [1/4]

[29.00ms] git
+ react-refresh@0.10.0
+ typescript@4.7.4
+ react@18.2.0
+ react-dom@18.2.0
+ web-vitals@2.1.4

8 packages installed [2.39s]

2.48s user 0.30s system 66% cpu 4.160 total

It takes Bun less than a second to complete the setup. That’s quite an improvement. But
is this a valid comparison? Upon further inspection, we find that: - npm installed 1,392
packages and the node_modules size is 250 MB. - Bun only installed 8 packages, with
a total size of 72 MB.

We’re comparing apples to oranges here because Bun’s starter React template is slim-
mer. Surprisingly, it’s still quite usable for development. I can run bun dev to start
hacking away immediately. Bun will also auto-reload on every change.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

Managing packages with Bun

Yet, Bun’s starter React cannot create a production build. For that, we’ll need to add
react-scripts with:

$ bun add react-scripts -d

The new dependency installs 1,133 more packages, taking node_modules to a total of
298 MB. Now we’re in a better position for the comparison.

After creating the new app 10 times with each tool, we have some numbers to compare.

Package Manager Create React App (10 runs)

npm 17.937 ± 28.813
Bun 3.210 ± 5.430

All tests were done with npm and bun caches warm, which explains why npm did much
better the second time.

Figure 2: Bun is 6 times faster than npm for creating a complete React project.

In this test Bun looks pretty good: it is at least 6 times faster than npm. From time to

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

https://www.npmjs.com/package/react-scripts

Managing packages with Bun

time, however, Bun would lock up (a known issue). Also, npm would slow down consid-
erably from time to time. I could not determine the cause for this.

Adding and removing packages with Bun and npm

Next, let’s test how long it takes npm and Bun to add and remove packages. I’ll use an
npm-created React App as the testing ground.

After removing and re-adding webpack](https://webpack.js.org/) 10 timeswith each tool,
I got the following results:

Tool Add Webpack (10 runs) Remove We pack (10 runs)

npm 1900 ms 4200 ms
Bun 100 ms 200 ms

Figure 3: Bun is 20 times faster than npm.

The only catch is that Bun’s package management is not 100% compatible with npm:
- Bun uses a binary lockfile instead of package-lock.json. But it can print out a

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

Managing packages with Bun

Yarn-compatible JSON lockfile with bun install -y. - Bun does not install peer
dependencies by default like npm. So you might end up with a different set of packages
than expected in your node_modules folder.

Bun as a task runner

Unfortunately, Bun’s runtime component has not implemented enough Node APIs to do
complex things such as building React projects or running end-to-end tests. Still, there
is one area in which Bun can help us right now: as a replacement for npm run.

The problem with npm is that it takes around 150 to 200ms to even start. It may not
sound like a big deal, but when you’re running scripts frequently, you can feel that quar-
ter of a second eating away at your productivity little by little.

Bun does not have this start-up problem, so bun run test should be at least a few mil-
liseconds faster than npm run test. We can confirm by running the same set of scripts
50 times and averaging the results:

Command Mean elapsed time (50 runs)

npm run test 1.208 ± 0.011
bun run test 1.046 ± 0.030

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

Managing packages with Bun

Figure 4: The difference is due to npm start-up time. The tests themselves are executed
with Node on both cases.

Copying large files

In this test, I want to compare how each runtime handles copying large files, which is
one area in which a lot of optimization effort was spent.

[EMBEDTWEET] https://twitter.com/jarredsumner/status/1458044627513085959?s=20&t=ZNC5u_OR28pA1LfPQVOlqw

I copied the same randomly-generated 1GB file with Bun, Deno, Node, and cp for the
test. After 20 runs with each tool, the results were:

Tool Mean [s] (20 runs) Min [s] Max [s] Relative

Bun 1.222 ± 0.158 1.027 1.556 1.00
Deno 1.276 ± 0.132 1.102 1.614 1.04 ± 0.17
cp 1.802 ± 0.714 0.451 3.304 1.47 ± 0.61
Node 4.003 ± 0.145 3.860 4.590 3.27 ± 0.44

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

Managing packages with Bun

Figure 5: Bun and Deno take the lead when copying large files.

It seems Bun andDeno perform equally well, and bothwin overcp by almost 50%. Node
is left far behind as it takes more than 3 times longer to complete the same task.

HTTP Showdown: Bun vs Deno vs Node

Bun’s runtime does include a working HTTP server, which presents a benchmarking op-
portunity to compare with Node and Deno. For the test, I’ll use Bun’s example scripts to
drive the tests. I’ll generate and measure traffic with oha.

The benchmark runs 2million requests with a concurrency of 50. For all cases, the HTTP
keepalive was enabled.

Runtime RPS Total time (2M requests)

Bun 70966 28.18 seconds
Deno 40404 49.50 seconds
Node 33814 59.14 seconds

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

https://github.com/oven-sh/bun/tree/e55d6eed2bf9a5db30250fdd8b9be063dc949054/bench/react-hello-world
https://github.com/hatoo/oha

Speeding up CI/CD with Bun

Figure 6: Bun is twice as fast as Node and 1.7 times faster than Deno for serving HTTP
requests on my dev machine.

Deno performed 19% better than Node, but Bun blew away the competition by perform-
ing twice as fast.

Speeding up CI/CD with Bun
We’ve confirmed that Bun can give you an edge on your developmentmachine, but does
it make sense to use it to accelerate CI/CD? This is a crucial aspect because the speed of
your continuous integration pipeline is a deciding factor for a fast development cycle.

I’ve configured two branches on Semaphore’s JavaScript demo project:

• master runs all scripts with npm as originally designed.
• The bun branch replaces npmwith Bun. To be clear, we’re only using Bun as a task
runner, not as a runtime. The test and build steps are still being executed by
Node in both cases.

Does Bun speed up CI/CD pipelines? After running both branches every ten minutes for
five hours and picking 33 samples, the results are:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
https://github.com/semaphoreci-demos/semaphore-demo-javascript

Conclusion

Runtime Average pipeline run (33 runs)

npm 3 minutes 46 seconds
Bun 3 minutes

Figure 7: Replacing npm with Bun speeds up my pipeline by 20%.

While experimenting with driving CI/CD with Bun, I learned a few things: - Instead of
caching the node_modules folder, it’s faster to save and restore Bun’s global cache
located at $HOME/.bun/install/cache. - Bun ships with an experimental test run-
ner, which is supposed to bemuch faster than Jest. Unfortunately, I wasn’t able to make
it work. We’ll have to wait until the bun is out of the oven to try it (pun intended). -
There’s a lot of potential for improvement. Once Bun runtime can replace Node, CI/CD
speed might increase dramatically.

Conclusion
Not only is Bun fast, it feels fast. It feels like you can do anything in under a second.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

https://docs.semaphoreci.com/essentials/caching-dependencies-and-directories/

Conclusion

Will Bun replace Node? It’s too early to say. When Deno came out, it certainly didn’t
kill Node — but I don’t think that was the intention, as it was never meant as a Node
replacement. But Bun aims for compatibility, so it has a better chance. And, as we’ve
seen, even at this early stage it can be a very powerful tool.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/blog/javascript-bun

Original publication date: 11 Aug 2022

Authors: Tomas Fernandez

Editor: Marko Anastasov

Reviewed by: Jarred Sumner

Build date: Aug 2022

Revision: 06632b0

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/blog/javascript-bun

	What is Bun?
	How does bun compare to Deno and Node?
	Is it really that fast?
	Benchmarking Bun
	Managing packages with Bun
	Adding and removing packages with Bun and npm
	Bun as a task runner
	Copying large files
	HTTP Showdown: Bun vs Deno vs Node

	Speeding up CI/CD with Bun
	Conclusion

