< semaphore

A Complete Guide
to Optimizing
Slow Tests

N
\
.




A Complete Guide to Optimizing Slow Tests

semaphoreci.com

Professional software development is a feedback-based process — each new iteration
is informed by past results. Feedback is powered to a considerable degree by tests.

When tests slow development down, engineering teams lose momentum and become
frustrated, because they can't meet their goals. A slow test suite puts the brakes on
Cl/CD, making release and deployment more difficult. This often means that organiza-
tions can't ship out products on time, and risk losing their competitive edge.

Choosing a scalable cloud platform like Semaphore is a great start. Semaphore offers
some features that are helpful in dealing with slow tests, which we will discuss later in
the article.

What's wrong with waiting for tests?

Tolerating a slow test suite is like making the minimum credit card payment when you
could pay off your balance: by not dealing with it now you have a bit more cash in the
short term, but will have to pay much more down the road. It doesn't make any sense,
but people do it because the costs are not immediately obvious. When faced with slow
tests, developers typically respond in one of three ways:

+ Do something else and pay the cognitive cost for the context switch.
+ Wait for results and lose focus on the problem at hand.
+ Trudge on blindly without feedback.

Whatever happens, development speed falters due to the lack of timely feedback.



The complete guide for making your slow tests fast

Slow Tests

Make a
change

Sloooow
feedback

@

- Breaks the flow

- Forces context switches

- No timely feedback

- Punishes frequent commits

Fortunately, we have a battle-tested plan that makes identifying and fixing slow tests
much easier.

The complete guide for making your slow tests fast

This guide consists of two parts:

« Part 1 lays down a framework to identify, prioritize and optimze the slow tests in

your suite.
+ Part 2 deals with the most common sources of slow test performance and their

solutions.

Published by Semaphore: CI/CD for teams that don't like bottlenecks - semaphoreci.com 2



A framework for making slow tests fast

A framework for making slow tests fast

Dealing with slow tests requires both a concerted effort and a sound plan: 1. Identify:
which tests are bad performers. 2. Prioritize: pick a batch of the slowest tests. See if
there are some outliers that could be easy to fix. 3. Profile: zoom in and capture metrics
to find out what your tests are doing behind the scenes. 4. Optimize: make the tests
snappy. 5. Repeat: go back to Step 1 and repeat the process until you test suite is in top
shape and your team is [0

Let's be clear. This is not a one-off endeavor. Itis part of the lifecycle of the project. Over
time, tests slow down as the codebase grows and more tests are added. Therefore, you'll
need to repeat the whole process at least once per quarter to be in good shape.

Step 1 — Identify high-value candidates

It can be hard to find the slowest tests when you have an extended CI/CD pipeline. Luck-
ily, Semaphore supports Test Reports, which provide an effective and consistent view of
your test suite in a CI/CD workflow.

There's a little bit of setup required: you need to configure the test's output to the JUnit
format, as well as add a few commands. The result is, however, well worth the effort. In
the detailed dashboard, you can spot problems, filter skipped tests, or order them by
duration.

63 Workflow @& Tests & Artifacts

Build & Test v

3 test results Expand/Collapse All @ Find test... = Slowestfirst © View
e Browser Tests il
1 failed, 63 passed o Front.Browser.WorkflowPage.Errors 5 passed 01:09.621
Duration: 03:52.896 test that a compile step waits for the pipeline to start 00:21.527
.. . test no compilation step => display nothin 00:21.333
o Elixir Unit Tests __p_ p> - ‘p L/ .g - _
. test transitioning from initializing -> running expands the promotions as well 00:13.138
632 passed, 69 skipped
Duration: 00:20.493 test compile exists, not yet started => display the message with 00:00 timer 00:11.489
test compile exists and running => display the message with a link to logs 00:02.132
e Javascript Unit Tests i L
251 o Front.Browser.WorkflowEditor.PipelineTest 1 failed, 16 passed 00:59.835
passed
Duration: 00:00.735 o Front.Browser.WorkflowEditor.BlocksTest 14 passed 00:31.774
o Front.Browser.WorkflowPage 7 passed 00:21.010
o Front.Browser.WorkflowPage.Favicon 8 passed 00:18.045
o Front.Browser.SelfHostedAgentsTest 6 passed 00:17.948
e Front.BrowserWorkflowPaae.Initialization 5 passed 00:08.496

Once you have a list of slow candidates to work on, you're ready for the next step.

Step 2 — Maximize optimization effort vs benefit

Two factors come into play for deciding where to start: how much faster you can make
a test and how long you need to optimize it. We're going to grab the low-hanging fruit
first.

In other words, we want to start working on tests that maximize:

Published by Semaphore: CI/CD for teams that don't like bottlenecks - semaphoreci.com 3


https://semaphoreci.com/product/test-reports
https://junit.org/junit5/
https://junit.org/junit5/

A framework for making slow tests fast

test runtime before - test runtime after

The trouble is that the only certainty we have at this point is how long the test takes.
Everything else that we have is an estimation. Consider starting with a few easy-to-fix
tests or deleting ones that do not add value, even if there are slower candidates in your

suite. Once you have a good grasp of the process, you can go after slower tests that
require more substantial effort to optimize.

The testing pyramid can guide us here. The width of each level reflects the suggested
ratio of tests for each type relative to the whole suite.

The Test Pyramid

Duration Granularity

Cost Speed
Maintenance

End to end

Integration

The pyramid tells us that a good test suite should have many unit tests, some integration
tests, and a few end-to-end or acceptance tests. In contrast, slow suites tend to be more
top-level heavy, i.e. the opposite of what they should look like.

Published by Semaphore: CI/CD for teams that don't like bottlenecks - semaphoreci.com 4



A framework for making slow tests fast

End to end

Integration

The way forward lies in cutting the fat at the top, either by deleting some tests or moving
them downwards.

Maybe an example can help at this point. Imagine that we want to write an acceptance
test for an online music service:

Feature: Control playback

Scenario: play a song
Given there is no song playing
When user presses the play button
Then the song should start playing

Scenario: pause a song
Given a song 1is playing
When user presses the play button
Then the song should be paused

It's a valuable test that checks a business-critical feature. You may be able to squeeze
some extra seconds of runtime but you can't ever delete it.

At the other extreme, we have this:

Feature: Search for music

Scenario: search song cannot have an emoji symbol
Given the search box is selected
When user types an emoji

Published by Semaphore: CI/CD for teams that don't like bottlenecks - semaphoreci.com


https://semaphoreci.com/blog/the-benefits-of-acceptance-testing
https://semaphoreci.com/blog/the-benefits-of-acceptance-testing

DOWNLOAD THE FULL GUIDE

Download the full guide

We hope you have enjoyed this small sample of the guide.
Download the the full guide for free here:

https://semaphoreci.com/resources/complete-guide-to-optimizing-slow-tests

Published by Semaphore: CI/CD for teams that don't like bottlenecks - semaphoreci.com


https://semaphoreci.com/resources/complete-guide-to-optimizing-slow-tests

	The complete guide for making your slow tests fast
	A framework for making slow tests fast
	Step 1 — Identify high-value candidates
	Step 2 — Maximize optimization effort vs benefit

	Download the full guide

