

CI/CD for Monorepos
Effectively building, testing, and deploying code with monorepos

Semaphore

1

Contents
Preface . 6
Who Is This Book for, and What Does It Cover? 7
How to Contact Us . 7
About the Author . 8
About the Editor . 8

1 Introduction to Monorepos 9
1.1 What Is a Monorepo? . 9
1.2 Monorepos vs. Multirepos . 9
1.3 What Monorepos Bring to the Table 10
1.4 Technical Challenges . 11
1.5 It’s Not (Only) about Technology 12
1.6 Notable Monorepo Adopters . 12
1.7 Investing in Tooling . 13
1.8 Scaling up Repositories . 14
1.9 Best Practices for Monorepo Management 15

2 Continuous Integration for Monorepos 16
2.1 The Challenge of CI/CD with Monorepos 16
2.2 Hello World Monorepo with Semaphore 17
2.3 Change-Based Execution . 21
2.4 Using change_in to Speed up Pipelines 22
2.5 How Semaphore Identifies Changes 25

3 Continuous Integration Demo 28
3.1 Monorepo Demo . 28
3.2 Setting up the Pipeline . 28

3.2.1 Billing Service . 29
3.2.2 Users Service . 31
3.2.3 UI Service . 32

3.3 Configuring Change Detection 33
3.4 Tips for Using change_in . 35

4. Continuous Deployment for Monorepos 36
4.1 Secrets . 36
4.2 Deploying with Promotions . 38
4.3 Parametrized Promotions . 41
4.4 Staging the Demo . 43

4.4.1 Staging the Users Service 43

2

4.4.2 Smoke Testing . 46
4.4.3 Staging the Rest of the Services 46

4.5 The Production Pipeline . 48
4.5.1 Promoting the Users Service to Production 48
4.5.2 Deploying the Billing and UI Services 49

4.6 Ready to Go . 50

5 Final Words 51
5.1 Share This Book With The World 51
5.2 Tell Us What You Think . 51
5.3 About Semaphore . 51

3

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https:
//creativecommons.org/licenses/by-nc-nd/4.0

This book is open source: https://github.com/semaphoreci/book-monorepo-
cicd

Published on the Semaphore website: https://semaphoreci.com

Sep 2022: First edition v1.0 (revision c5d9951)

4

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/book-monorepo-cicd
https://github.com/semaphoreci/book-monorepo-cicd
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=monorepo-cicd

Share this book:

I’ve just started reading “CI/CD for Monorepos”, a free ebook by
@semaphoreci: https://bit.ly/3yopUT2 (Tweet this!)

5

https://ctt.ac/dL5z4

Preface
A monorepo is a new name for an old idea — placing a bunch of software
projects into the same code repository. Organizations that overcome the
technical challenges associated with adopting monorepos enjoy significant
benefits:

• Cultural — increased bandwidth of knowledge transfer and a higher
level of collaboration among teams.

• Technical — common coding and tooling standards, simplified depen-
dency management, and configuration reuse.

Big companies like Google, Facebook, Twitter, and Airbnb have been using
monorepos for years. Today, there are a growing number of smaller teams
adopting monorepos.

Why the change now? On the frontend side, the proliferation of JavaScript-
based tools is such that it is possible to develop very complex applications in
a single programming language. Architects of frontend projects now face the
problems of separating concerns and avoiding code duplication — and they
have a good set of tools to solve these problems by working in a monorepo.

On the backend side, serverless and microservices-based architectures drive
developers to logically isolate their code into small units. Most of these
services are written with the same set of tools and coding standards, and built,
configured, and deployed in the same way. Placing them into a monorepo is an
efficient way of avoiding duplicate configurations and processes.

At Semaphore, we have observed this trend in a growing number of teams and
have solved the technical challenge of running effective CI/CD pipelines for
monorepos.

Using traditional CI/CD tools in the monorepo context, developers essentially
need to build, test, and deploy all services all the time. Using Semaphore,
developers run dynamic CI/CD workflows that run the right pipelines at the
right time. This gives product teams more time to focus on building the next
great feature.

6

Who Is This Book for, and What Does It Cover?
This book is intended for software engineers who are either exploring using a
monorepo for software development or looking to optimize the CI/CD process
for their monorepo.

By showing what it takes to build a monorepo-first CI/CD pipeline that saves
time and speeds up software development cycles, we hope that CTOs and other
engineering leaders will be able to determine if monorepos are the way forward
for their companies and teams.

Chapter 1, “Introduction to Monorepo”, introduces the basics and relates
stories about other companies that have successfully migrated to a monorepo.
This chapter will help you decide if a monorepo is right for you.

Chapter 2, “Continuous Integration”, explains what you need to know about
setting up a CI pipeline that builds and tests only the code that changes.

In chapter 3, “Continuous Integration Demo”, we apply the knowledge gained
so far into building and testing a demo monorepo with working microservices.

Chapter 4, “Continuous Deployment”, describes how to expand the CI pipeline
with continuous deployments. We’ll learn how to implement a continuous
deployment pipeline on top of a working project.

How to Contact Us
We would very much love to hear your feedback after reading this book. What
did you like and learn? What could be improved? Is there something we could
explain further?

A benefit of publishing an ebook is that we can continuously improve it. And
that’s exactly what we intend to do based on your feedback.

You can send us feedback by sending an email to learn@semaphoreci.com.

Find us on Twitter: https://twitter.com/semaphoreci

Find us on Facebook: https://facebook.com/SemaphoreCI

Find us on LinkedIn: https://www.linkedin.com/company/rendered-text

7

mailto:learn@semaphoreci.com
https://twitter.com/semaphoreci
https://facebook.com/SemaphoreCI
https://www.linkedin.com/company/rendered-text

About the Author
Pablo Tomas Fernandez Zavalia is an electronic engineer and writer. He
started out developing for the City Hall of Buenos Aires (buenosaires.gob.ar).
After graduating, he joined British Telecom as head of the Web Services
department in Argentina. He then worked for IBM as a database administrator,
where he also did tutoring, DevOps, and cloud migrations. In his free time,
he enjoys writing, sailing, and board games. Follow Tomas on Twitter at
@tomfernblog.

About the Editor
Marko Anastasov is a software engineer, author, and entrepreneur. Marko
co-founded Rendered Text, the software company behind the Semaphore CI/CD
service. He worked on building and scaling Semaphore from an idea to a cloud-
based platform used by some of the world’s best engineering teams. Follow
Marko on Twitter at @markoa.

8

https://twitter.com/tomfernblog
https://twitter.com/markoa

1 Introduction to Monorepos
Monorepos can be a great force for fostering rapid development workflows. But,
are they the right fit for you, your team, and your company?

1.1 What Is a Monorepo?
Not everyone agrees on a single definition for monorepo. Some may only
accept the term when it applies to companies hosting all their code in a single
repository. Google is the most famous example of this; their monorepo is
theorized to be the largest code repository in the world, which has thousands
of commits per day and exceeds 80 TBs in size.

More relaxed definitions will say that a monorepo is a version-controlled code
repository holding a number of independently-deployable projects. While these
projects may be related, they are often separate, logically-independent, and
run by different teams. For instance, Airbnb has two monorepos: one for
the frontend code and one for the backend code. In this way, a company or
organization can utilize multiple monorepos.

Monorepos are sometimes also called monolithic repositories, but they should
not be confused with monolithic architecture, a software development practice
for writing centralized applications using a single codebase. To give one example
to these kinds of architectures, think of a Ruby on Rails application handling
websites, API endpoints, and background jobs all at once.

1.2 Monorepos vs. Multirepos
The opposite of the monorepo is a multirepo, or simply repos, where each
project is held on a completely separate, version-controlled software repository.
Multirepos come naturally — it’s what we do when starting a new project.
After all, who doesn’t like starting fresh?

Moving from multi to monorepo is merely a matter of moving all your projects
into a single repository.

$ mkdir monorepo
$ git init
$ mv ~/src/app-android10 ~/src/app-android11 ~/src/app-ios .
$ git add -A
$ git commit -m "My first monorepo"

9

Of course, this is just to get started. The hard work comes later, when we get
into refactoring and consolidation. To enjoy the full benefits of a monorepo,
all shareable code should be moved outside of each project folder and into a
common location.

Multirepos are not a synonym for microservices. In fact, having one does not
require using the other. Later, we’ll discuss companies using monorepos with
microservices. A monorepo can host any number of microservices as long as you
carefully set up your Continuous Integration and Delivery (CI/CD) pipeline1

for deployment.

1.3 What Monorepos Bring to the Table
At first glance, the choice between monorepos and multirepos might not seem
like a big deal. On closer inspection, however, it’s a decision that deeply
influences how you and your team interact.

Monorepos have the following benefits:

• Visibility: everyone can see everyone else’s code, leading to better
collaboration and cross-team contributions. Any developer can fix a bug

1CI/CD Pipeline, A Gentle Introduction - https:// semaphoreci.com/blog/cicd-pipeline

10

https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com/blog/cicd-pipeline

in your code before you even notice it.
• Simpler dependency management: sharing dependencies is trivial.

There’s little need for a complex package manager setups as all modules
are hosted in the same repository.

• Single source of truth: one version of every dependency means there
are no versioning conflicts and no dependency hell.

• Consistency: enforcing code quality standards and a unified style is
straightforward when you have your entire codebase in one place.

• Shared timeline: breaking changes in APIs or shared libraries are
immediately exposed, forcing different teams to communicate and join
forces. Monorepos keep everyone invested in keeping up with changes.

• Atomic commits: atomic commits make large-scale refactoring possible.
In theory, a developer can update several packages or projects at once in
a single commit. In practice, these types of changes are usually rolled
out in stages, not all at once.

• Implicit CI: continuous integration is guaranteed as all the code is
already integrated into one place.

• Unified CI/CD process: you can use the same CI/CD deployment
process for every project in the repo.

1.4 Technical Challenges
As monorepos grow, we reach design limits in version control tools, build,
systems, and continuous integration solutions. These problems can make a
company go the multirepo route:

• Bad performance: monorepos can be difficult to scale up. Commands
like git blame take unreasonably long, IDEs begin to lag, and testing
the whole repo for every change becomes infeasible.

• Broken main/master: a broken master affects everyone working in the
monorepo. This can be seen as either disastrous or as a good motivation
to keep tests clean and up to date.

• Learning curve: the learning curve for new developers is steeper if the
repository spans many tightly-coupled projects. Keep in mind, however,
that the same can be the case with multi-repos.

• Large volumes of storage: monorepos can reach unwieldy sizes and
very large quantities of commits per day.

• Ownership: maintaining ownership of files is more challenging. Systems
like Git or Mercurial don’t feature built-in directory-level permissions.

• Code reviews: notifications can get very noisy. For instance, GitHub

11

sends notifications about PRs to every developer in the repository.

You may have noticed that these problems are mostly technical. Some of
them can be mitigated by adopting the trunk-based development model, which
encourages engineers to collaborate in a single branch — the trunk — and
proposes limiting the lifespan of topic branches to a minimum.

1.5 It’s Not (Only) about Technology
Choosing a repository strategy is not only a technical matter but also about
how people communicate. As stated by Conway’s Law, communication is
essential for building great products:

Any organization that designs a system will produce a design whose
structure is a copy of the organization’s communication structure.

— Melvin E. Conway

While multirepos allow each team to manage their projects independently, they
also put up communications barriers. In that way, they can act as blinders,
making developers focus only on the part they own, forgetting the overall
picture.

A monorepo, on the other hand, works as a central hub, a market square of
sorts where developers, engineers, testers, and business analysts meet and talk.
Monorepos encourage conversations while helping bring silos down.

1.6 Notable Monorepo Adopters
Open-source projects, by their nature, have more freedom to experiment and feel
greater pressure to self-organize. For three decades, FreeBSD has used CVS and
later subversion monorepos for development and package distribution. Other
notable projects with monorepo support or that are monorepos themselves are
Babel, Google’s Angular, Facebook’s React and Jest, and Gatsby.

Comercial companies have also posted about their journey towards monorepos.
Besides the big ones like Google, Facebook, or Twitter, we find some interesting
cases such as:

• Segment.com2: a company offering an event collection and forwarding
service. Initially, they used one repository per customer. As the number
of customers increased, they moved their 140 repositories into a single one.

2Goodbye Microservices - https:// segment.com/blog/goodbye-microservices/

12

https://docs.freebsd.org/en_US.ISO8859-1/articles/committers-guide/article.html
https://docs.freebsd.org/en_US.ISO8859-1/articles/committers-guide/article.html
https://github.com/babel/babel/blob/master/doc/design/monorepo.md
https://angular.io/guide/file-structure
https://github.com/facebook/react/tree/master/packages
https://jestjs.io/docs/next/configuration
https://github.com/gatsbyjs/gatsby/tree/master/packages
https://segment.com/blog/goodbye-microservices/
https://segment.com/blog/goodbye-microservices/

They migrated all the services and dependencies into their monorepo.
While the transition was successful, it was very taxing as they had to
reconcile shared libraries and test everything each time. Still, the end
result was reduced complexity and increased maintainability.

• Airbnb3: initially ran on Ruby on Rails. Their “monorail” accompanied
the company’s exponential growth, until it didn’t. Eventually, it was
obvious that the rate of changes and number of commits was too much for
a single repository. After some debate, they chose to split development
into two monorepos: one for the frontend and one for the backend.
Both comprise hundreds of services, the documentation, Terraform and
Kubernetes resources for deployment, and all the maintenance tools.

• Pinterest4: has an ongoing three-year-long migration. The plan is to
move more than 1300 repositories into only four monorepos and then
consolidate hundreds of dependencies into a monolithic web application.
The objective is to get a more uniform build process and higher quality
standard. Automation, simplification, and standardization of release
practices allowed them to cut down on boilerplate and let developers
focus on writing code.

• Uber5: their build system used to be a combination of the Golang
toolchain and Make. As they moved their mobile development to the
monorepo and the number of files reached the 70 thousand mark, Make
no longer fulfilled their needs. They elected to adopt Bazel, an offshoot of
Google’s build system, designed for scalability and featuring incremental
builds, to which they ended contributing several patches and improve-
ments. According to Uber, their monorepo is likely one of the largest Go
repositories running on Bazel.

1.7 Investing in Tooling
If we have to take only one lesson from all these stories, it is that proper tooling
is key for effective monorepos. Building and testing need to be rethought:
instead of rebuilding the entire repo on each update, we can use smart build
systems that understand the structure of the projects and work only on the
parts that change.

3From Monorail to Monorepo, Airbnb’s journey into Microservices - https://www.youtub
e.com/watch?v=sakGeE4xVZs

4Pinterest’s journey to a Bazel monorepo - https://www.youtube.com/watch?v=r5KHQ
nS6uP8

5Building Uber’s Go Monorepo with Bazel - https://eng.uber.com/go-monorepo-bazel/

13

https://www.youtube.com/watch?v=sakGeE4xVZs
https://www.youtube.com/watch?v=r5KHQnS6uP8
https://eng.uber.com/go-monorepo-bazel/
https://www.youtube.com/watch?v=sakGeE4xVZs
https://www.youtube.com/watch?v=sakGeE4xVZs
https://www.youtube.com/watch?v=r5KHQnS6uP8
https://www.youtube.com/watch?v=r5KHQnS6uP8
https://eng.uber.com/go-monorepo-bazel/

On a high level, a smart build system would need to:

1. Determine which files changed due to commits since the last build.
2. Find all the projects and their dependencies affected by the changes.
3. Build these projects, ideally using some form of caching.
4. Run tests based on affected code.
5. Deploy the projects that have changed into staging or production.

Most of us, however, don’t have Airbnb’s resources. So, what can we do?
Fortunately, many larger companies have open-sourced their build systems:

• Bazel: released by Google and based partly on their homegrown build
system (Blaze). Bazel supports many languages and is capable of building
and testing at scale.

• Buck: Facebook’s open-source fast build system. Supports differential
builds on many languages and platforms.

• Pants: The Pants build system was created in collaboration with Twitter
and Foursquare. For the moment, it supports only Python, but more
languages are on the way.

• RushJS: Microsoft’s scalable monorepo manager for JavaScript.

Monorepos seem to be getting more attention, particularly in JavaScript, as
shown by these projects:

• Lerna: monorepo manager for JavaScript. Integrates with popular frame-
works like React, Angular, or Babel.

• Yarn Workspaces: installs and updates dependencies for Node.js in
multiple places with a single command.

• ultra-runner: scripts for JavaScripts monorepo management. Works with
Yarn, pnpm, and Lerna. Supports parallel building.

• Monorepo builder: installs and updates packages across PHP monorepos.
• NPM: since version 7, has support for workspace.

1.8 Scaling up Repositories
Source control is another sticking point for monorepos. These tools can help
you scale up repositories:

• Virtual Filesystem for Git (VFS): adds streaming support for Git. VFS
downloads objects from Git repositories as needed. This project was
originally created to manage the Windows codebase (which is the largest
Git repository). Works only in Windows, but MacOS support has been
announced.

14

https://bazel.build/
https://buck.build/
http://www.pantsbuild.org/
https://rushjs.io/
https://github.com/lerna/lerna
https://classic.yarnpkg.com/en/docs/workspaces/
https://github.com/folke/ultra-runner
https://github.com/Symplify/MonorepoBuilder
https://docs.npmjs.com
https://docs.npmjs.com/cli/v7/using-npm/workspaces
https://vfsforgit.org/

• Large File Storage: an open-source extension for Git that adds better
support for large files. Once installed, you can track any type of file and
seamlessly upload it into cloud storage, freeing up your repository and
making pushing and pulling much faster.

• Mercurial: an alternative to Git, Mercurial is a distributed version control
tool that focuses on speed. Facebook uses Mercurial and has contributed
many speed-enhancing patches over the years.

• CODEOWNERS: lets you define which team owns subdirectories in the
repository. Code owners are automatically requested to review when
someone opens a pull request or pushes into a protected branch. This
feature is supported by GitHub and GitLab.

1.9 Best Practices for Monorepo Management
Based on what we have learned about monorepos, we can define a minimum
set of best practices:

• Define a unified directory organization for easy discovery.
• Maintain branch hygiene. Keep branches small, consider adopting trunk-

based development practices.
• Use pinned dependencies for every project. Upgrade dependencies all

at once, force every project to keep up with the dependencies. Reserve
exceptions for truly exceptional cases.

• If you’re using Git, learn how to use shallow clone6 and filter-branch7 to
handle large-volume repositories.

• Pick a smart build system like Bazel or Buck to speed building and
testing.

• Use CODEOWNERS when you need to restrict access to certain projects.
• Use a cloud CI/CD platform like Semaphore to test and deploy your

applications at any scale.

6Get up to speed with shallow clone - https://github.blog/2020 -12 -21 -get-up-to-speed-
with-partial-clone-and-shallow-clone/

7git-filter-branch reference page - https://git-scm.com/docs/git-filter-branch

15

https://git-lfs.github.com/
https://www.mercurial-scm.org/
https://engineering.fb.com/2014/01/07/core-data/scaling-mercurial-at-facebook/
https://help.github.com/articles/about-codeowners/
https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/
https://git-scm.com/docs/git-filter-branch
https://semaphoreci.com
https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/
https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/
https://git-scm.com/docs/git-filter-branch

2 Continuous Integration for Monorepos
Monorepos are highly-active code repositories. The default behavior of con-
tinuous integration systems, which is to build, test, and deploy everything all
the time, is suboptimal in the context of a monorepo. In this chapter you will
learn how to use Semaphore’s out-of-the-box support for monorepo CI/CD
workflows.

2.1 The Challenge of CI/CD with Monorepos
Properly implementing a CI/CD workflow with a monorepo presents its own
set of challenges. By default, a CI/CD pipeline will run from beginning to end
on every commit. This is expected. After all, that’s what the “continuous” in
continuous integration stands for.

A classic CI pipeline will run every job in sequence every time a new commit
is pushed into the repository.

Running every job in the pipeline is perfectly fine on single-project repositories.
But monorepos see a lot more activity. Even the smallest change will re-run
the entire pipeline — this is time-consuming and needlessly expensive.

Semaphore is a CI/CD platform with native monorepo support. Its change-
based, parallel execution feature lets you skip jobs when the relevant code has
not changed. This will let you ignore parts of the pipeline you’re not interested
in re-running.

16

2.2 Hello World Monorepo with Semaphore
If you’re new to Semaphore, spend 10 minutes reading the getting started
guide to learn the basics of creating a pipeline. You’ll find the guide here:

https://docs.semaphoreci.com/guided-tour/getting-started

Back? OK, let’s walk through creating a monorepo pipeline.

To follow this guide, you’ll need:

• A GitHub account.
• A Semaphore (https:// semaphoreci.com) account. Click on Sign up

with GitHub for a free trial or open source account.

Get started by creating a new repository on GitHub and cloning it to your
machine. We’ll call the repository “hello-semaphore”.

Create a couple of folders in the repository in order to try out change-based
detection. Let’s call them service1 and service2:

$ mkdir service1 service2
$ touch service1/README.md service2/README.md
$ git add .
$ git commit -m "create dummy services"
$ git push

17

https://docs.semaphoreci.com/guided-tour/getting-started
https://semaphoreci.com
https://semaphoreci.com

Next, log in with your Semaphore account and click on Create New in the
upper left corner.

After choosing the “hello-semaphore” repository, wait a few seconds for
Semaphore to initialize the project.

The next screen lets you add people to the project, which we don’t need to do
for now. Go ahead and click Continue to Workflow Setup to proceed.

Finally, you’ll reach the template selection screen, select Single job, then click
Looks good, followed by start.

18

The initial workflow should start immediately.

Now click on Edit Workflow to edit the pipeline.

In this screen you can modify and create new blocks in the pipeline. Rename the
block to “Build service1” and add the following command: echo "building
service1".

19

Click on Add Block, the new block is called “Build service2”. Uncheck the Build
service1 in dependencies. This causes both blocks to run in parallel. For the
command, type echo "building service2".

Click on Run this Workflow, change the branch to the default branch your
repository uses (usually, it’s called main) and click on Start.

20

Both blocks should run in parallel.

2.3 Change-Based Execution
Let’s pause for a moment to learn about change_in. The change_in8 function
calculates if recent commits have changed code in a given file or folder. This
function must be called at the block level. If it detects changes, then all the
jobs in the block will be executed. Otherwise, the whole block is skipped. The
end result is that this function allows us to tie a specific block to parts of the
repository.

The basic usage of the function is:

change_in('/web/')
8Function change_in reference page - https://docs.semaphoreci.com/ref erence/conditi

ons-reference/#change_in

21

https://docs.semaphoreci.com/reference/conditions-reference/#change_in
https://docs.semaphoreci.com/reference/conditions-reference/#change_in
https://docs.semaphoreci.com/reference/conditions-reference/#change_in

This will run the block if any files inside the web folder have changed. Absolute
paths start with / and reference the root of the repository. Relative paths
don’t start with a slash, they are relative to the pipeline file, which is located
inside /.semaphore by default.

We can also target a specific file:

change_in('../package-lock.json')

Wildcards are supported too:

change_in('/**/package.json')

Also, you’re not limited to monitoring one path, you may define lists of files
or folders. The following statement, for instance, will run when the /web/
folder or the /manifests/kubernetes.yml file changes (both simultaneously
changing work too):

change_in(['/web/', '/manifests/kubernetes.yml'])

The function can take a second optional argument to further configure its
behavior. For instance, if your repository default branch is main instead of
master (GitHub’s new default), you’ll need to add default_branch: 'main':

change_in('/web/', { default_branch: 'main' })

Semaphore will re-run all jobs when we update the pipeline, even if no other files
have changed. We can disable this behavior with pipeline_file: 'ignore':

change_in('/web/', { pipeline_file: 'ignore' })

Another useful option is exclude, which lets us ignore files or folders.For
example, we can ignore all Markdown files with:

change_in('/web/', { exclude: '/web/**/*.md' })

To see the rest of the options, check the conditions YAML reference9.

2.4 Using change_in to Speed up Pipelines
In our CI pipeline there is no change detection yet; we’ll remedy that now.
Click on Edit Workflow to re-open the Workflow Builder.

9Conditions reference page - https://docs.semaphoreci.com/ref erence/conditions-
reference/

22

https://github.com/github/renaming
https://docs.semaphoreci.com/reference/conditions-reference/
https://docs.semaphoreci.com/reference/conditions-reference/
https://docs.semaphoreci.com/reference/conditions-reference/

On the first block, scroll down until you reach the section Run/skip Conditions
and enable the option: “Run this block when conditions are met”.

Type the following condition: change_in('/service1/', { default_branch:
'main'}). If your repository’s default branch is master you can skip the
default_branch option altogether.

Go to the second block and type this condition: change_in('/service2/',
{ default_branch: 'main'}).

23

Click on Run the Workflow > Start to save the pipeline. Next, run the pipeline
again. The first thing you’ll notice is that there’s a new initialization step.
Here, Semaphore is calculating differences in order to decide which blocks
should run. You can check the log to see what is happening behind the scenes.

Once the workflow is ready, Semaphore will start running all jobs one more
time (this happens because we didn’t set pipeline_file: 'ignore'). The
interesting bit comes later, when we change a file in one of the applications.

$ git pull
$ echo "modify service1" >> service1/README.md
$ git add service1
$ git commit -m "modify service1"
$ git push

This is what we get:

24

Two things have happened now that change-detection is enabled on the pipeline:

• A new initialization log is shown in the pipeline. The log is the output of
Semaphore’s initialization job, which reveals what folders or files have
been marked as changed.

• Semaphore has detected that some parts of the monorepo have not
changed and has skipped the related block. The improved pipeline can
now selectively build the monorepo.

2.5 How Semaphore Identifies Changes
To understand what blocks will run each time, we must examine how change_in
calculates the changed files in recent commits. The commit range varies
depending on whether you’re working on main/master or a topic branch.

For the main branch, Semaphore compares the changes in all the commits for
the push, then skips the change_in blocks that do not have at least one match.

25

Semaphore takes a broader criteria for branches. The commit range goes from
the point of the first commit that branched off the mainline to the branch’s
head. This explains why Semaphore may choose to re-run blocks even on
commits that seemingly don’t match the change criteria.

26

Pull requests behave similarly.

The commit range is defined from the first commit that branched off the branch
targeted for merging to the head of the branch.

27

3 Continuous Integration Demo
In the previous chapter, we learned the basics of creating monorepo pipelines
using Semaphore. Our CI build was limited to conditionally running essentially
empty jobs. We will now expand our knowledge by building a realistic pipeline
that deals with dependency management and caching, compiling code, and
running tests.

To make it easy to follow along, we have prepared a demo made of three
microservices. It works well to show how everything we’ve seen thus far fits
together. And it will act as a springboard that takes us into continuous delivery
in the next chapter.

3.1 Monorepo Demo
The demo project we’re going to use contains three microservices. The code is
located in the services folder:

• /services/user: a Ruby-based user registration service. Exposes a
HTTP REST endpoint.

• /services/billing: written in Go. Stores payment details.

• /services/ui: is the frontend and is written in Elixir.

All these parts are meant to work together, but each one can be maintained by
a separate team and written in a different language.

Before moving on, go ahead and fork the repository and clone it into your
machine:

https://github.com/semaphoreci-demos/ semaphore-demo-monorepo

3.2 Setting up the Pipeline
To begin, create a new project in Semaphore and select the demo repository.
Alternatively, if you prefer to jump directly to the final state, find the monorepo
example and click the Fork & Run button.

The repository ships with a ready-to-use pipeline, but we’ll learn a lot more
by setting it up manually. Therefore, when prompted, click on “I want to
configure this project from scratch”.

28

https://github.com/semaphoreci-demos/semaphore-demo-monorepo

We’ll start with the Billing application. Find the Go Workflow and click on
Customize:

3.2.1 Billing Service

The first block in the pipeline builds and tests the Billing service. The starter
job uses uses two new commands:

29

• checkout10: clones the repository into the Semaphore machine and changes
the current directory.

• sem-version11: switches the current version of a language.

We have to modify the job in two places before it will work with the project:

1. The app has been tested on Go version 1.14+. So, add this line to the
beginning of the job sem-version go 1.14.

2. Since the code is located in the services/billing folder, add cd
services/billing after checkout.

The full job should look like this:

sem-version go 1.14
export GO111MODULE=on
export GOPATH=~/go
export PATH=/home/semaphore/go/bin:$PATH
checkout
cd services/billing
go get ./...
go test ./...
go build -v .

The last three commands use Go’s built-in toolset to download dependencies,
test, and build the microservice.

10Checkout reference page - ht tps:// docs.semaphoreci .com/r ef er ence/toolbox -
reference/#checkout

11sem-version reference page - https://docs.semaphoreci.com/ci-cd-environment/sem-
version-managing-language-versions-on-linux/

30

https://docs.semaphoreci.com/reference/toolbox-reference/#checkout
https://docs.semaphoreci.com/ci-cd-environment/sem-version-managing-language-versions-on-linux/
https://docs.semaphoreci.com/reference/toolbox-reference/#checkout
https://docs.semaphoreci.com/reference/toolbox-reference/#checkout
https://docs.semaphoreci.com/ci-cd-environment/sem-version-managing-language-versions-on-linux/
https://docs.semaphoreci.com/ci-cd-environment/sem-version-managing-language-versions-on-linux/

3.2.2 Users Service

Let’s add a second application to the pipeline. Create a new block. Then, add
the commands to install and test the Ruby app:

sem-version ruby 2.5
checkout
cd services/users
cache restore
bundle install
cache store
bundle exec ruby test.rb

If you look closely, there’s something new here: cache12. This is a built-in
command that lets us persist files between jobs and workflows. By itself, cache
store figures out the project structure automagically and saves the relevant
files into project-level storage. The cache speeds up this job by saving the
downloaded Ruby Gems.

Finally, uncheck all the checkboxes under Dependencies.
12Cache reference page - https://docs.semaphoreci.com/ref erence/toolbox-reference/

#cache

31

https://docs.semaphoreci.com/reference/toolbox-reference/#cache
https://docs.semaphoreci.com/reference/toolbox-reference/#cache

3.2.3 UI Service

Add a third block to test the UI service. The following installs and tests the
app. Remember to uncheck all block dependencies.

checkout
cd services/ui
sem-version elixir 1.9
cache restore
mix local.hex --force
mix local.rebar --force
mix deps.get
mix deps.compile
cache store
mix test

32

3.3 Configuring Change Detection
You can try running the pipeline now, just to make sure everything is in order.
Now, what happens if we change a file inside the /services/ui folder?

Yeah, despite the fact that only one of the projects has changed, all the blocks
are running. For a big monorepo with hundreds of projects, that’s a lot of
restless hours of waiting for the build to end. We can do better.

Open the workflow editor again. Pick one of the blocks and open the Skip/run
Conditions section. Add some change criteria:

change_in('/services/billing')

Repeat the procedure for the rest of the blocks.

change_in('/services/ui')

and

change_in('/services/users')

With change_in in place, Semaphore will only work on microservices that have
recently changed.

33

Can you guess which application we changed? Yes, that’s right: it was the
Billing app. As a result, thanks to change_in, the other two blocks have been
skipped because neither met the change conditions.

If we make a change outside any of the monitored folders, then all the blocks
are skipped and the pipeline completes in just a few seconds.

34

3.4 Tips for Using change_in
Tying up a block with a piece of the code results in a smarter pipeline that
builds and tests only what has recently been changed.

Scaling up large monorepos with change_in is easier if you follow these tips
for organizing your code and pipelines:

• Define a unified folder organization, so you can use clean change condi-
tions.

• Design your blocks around project folders.
• When needed, add multiple files and folders to change_in. Use this to

rebuild all the connected project components within a monorepo.
• Keep branches small, and merge them frequently to cut build times.
• Use exclude and wildcards to ignore files that are not relevant, such as

documentation or READMEs.
• Use change_in in auto-promotions to selectively trigger continuous de-

livery or deployment pipelines.

In the next section, we’ll learn how to apply this principle to continuous delivery.
We’ll also learn a few more key concepts that play a key role in automatic
deployments later on.

35

4. Continuous Deployment for Monorepos
Chapter three left us with a working CI pipeline. Now that we’re through with
the basics. Let’s focus on the final stage of every CI/CD process: continuous
deployment (CD), where we deploy the application services into production
systems continually, without human intervention.

The shift from CI to CD is subtle but, in reality, it’s a completely different
ball game. While everything in CI happens, as it were, within the bounds of
Semaphore’s systems, a CD pipeline, be it by publishing a package, updating a
service, or deploying software, will necessarily interact with the external world.
Therefore, extra precautions must be taken to avoid surprises.

Before we configure an automated deployment, we’ll need to master two
Semaphore concepts:

• A secret holds the access keys required for authentication with external
systems.

• Promotions connect the CI and CD pipelines together to create complex
workflows.

4.1 Secrets
Telling Semaphore how to deploy software typically means storing a password,
some API keys, or other sensitive information as a secret. Secrets13 are
encrypted variables and files that are decrypted into jobs on a need-to-know
basis in order to keep your data secure.

Secrets can be accessed through the Settings option in the organization menu.

The Secrets menu lets you manage all the secrets within the organization.
13environment variables and secrets - https://docs.semaphoreci.com/essentials/enviro

nment-variables/

36

https://docs.semaphoreci.com/essentials/using-secrets/
https://docs.semaphoreci.com/essentials/environment-variables/
https://docs.semaphoreci.com/essentials/environment-variables/

A secret is, in short, one or more variables or files, which are encrypted once
you press Save Secret.

To use the secret in a job, you need to enable it at the block level. Enabling
the secret will make Semaphore decrypt it, import the value as environmental
variables or copy attached files into all the jobs in the block.

37

As you can see in the output of the log, you can access the secret value like
any other environment variable.

4.2 Deploying with Promotions
Promotions14 connect pipelines together. While there are no fixed rules, they
are usually placed in the natural “space” that exists between CI and CD.

Promotions are created via the Add Promotion button in the workflow editor.
This will create a new pipeline.

14deploying with promotions - https://docs.semaphoreci.com/essentials/deploying-
with-promotions/

38

https://docs.semaphoreci.com/essentials/deploying-with-promotions/
https://docs.semaphoreci.com/essentials/deploying-with-promotions/
https://docs.semaphoreci.com/essentials/deploying-with-promotions/

There’s nothing special about this pipeline, you can create blocks and jobs as
usual.

By default, promotions are not automatic, which means that you need to
manually start them by clicking a button once the workflow has started.

39

Auto-promotions are activated when specific conditions are detected, such as
when a commit is pushed into a certain branch. Checking the Enable automatic
promotion box brings up a field to type the conditions that determine when
the next pipeline starts.

Conditions are specified by mixing one or more of the following:

• branch: evaluates to which branches the commit was made.
• tag: used to detect a Git-tagged release.
• pull request: used when the workflow was triggered by a pull request.
• change detection: checks if files have changed in one or more selected

folders or files.

The default conditions will make the new pipeline start when all tests pass on

40

the master branch:

branch = 'master' AND result = 'passed'

4.3 Parametrized Promotions
Parametrized promotions let us reuse a pipeline for many tasks. For instance,
you can create a deployment pipeline and share it among multiple applications
in the monorepo, ensuring you have a unified release process for all the services.

Parametrized promotions work in tandem with environment variables — we
define one or more variables and set default values based on the same conditional
syntax we use in regular promotions.

To create a parameter, scroll down to the promotion pane and click +Add
Environment Variable.

41

When the promotion is started manually, we can choose a value from the list.
With auto-promotions, however, the default value is used.

There are three important things to keep in mind while defining a parameter:

• Leaving the list of allowed values empty lets you type in any value, which
opens the possibility for human errors.

• Parameters can be optional or mandatory. Required parameters must
have a default value defined. Non-mandatory parameters can be empty.

• You can define multiple parameters in the same promotion.

Parameters define global, per-pipeline environment variables that jobs in it can
access directly.

42

4.4 Staging the Demo
Let’s see how to apply what we learned to the deploying the demo.

We want a sturdy CI/CD process. Testing the services in CI is no guarantee
of zero errors in production. A considerable degree of extra confidence can be
gained by using a staging environment. Consequently, we will need two new
pipelines:

• Staging: runs the application in a production-like environment and
performs smoke tests.

• Production: if tests succeed, it deploys into the production systems.

4.4.1 Staging the Users Service

Begin by creating a new promotion and making it automatic. We’ll deploy
the User service on every change committed to the master branch. The
auto-promotion condition will then be:

change_in('/services/users') AND results = 'passed' AND branch = 'master'

Type the condition into the When? field.

43

In the same pane, immediately below, you’ll find the parameters section. Click
+Add Environment Variable and type the following:

• Name of the variable: SVC
• Description: Service to stage
• Valid options: users, billing, ui (one per line)
• Default value: users

What we’re doing here is creating an environmental variable, called SVC, that
takes one of the three services in the repository.

Next, we’ll create the staging pipeline. Click on the newly created pipeline
and scroll down to the YAML file path. Replace the default value with

44

.semaphore/stage.yml

Click on the new pipeline and set its name to: Stage ${{ parameters.SVC
}}. The special syntax allows the SVC variable to be expanded dynamically
once the pipeline begins running.

We’ll use the first block in the staging pipeline to deploy SVC. Type the de-
ployment commands for this service. Add whichever secrets and environmental
variables you need to release the new version into the staging environment.

If you need inspiration for setting up the jobs, we’ve written a lot about this
on the Semaphore blog:

• What Is Canary Deployment: https:// semaphoreci.com/blog/what-is-
canary-deployment

• What Is Blue-Green Deployment: https:// semaphoreci.com/blog/blue-
green-deployment

• A Step-by-Step Guide to Continuous Deployment on Kubernetes: https:

45

https://semaphoreci.com/blog/what-is-canary-deployment
https://semaphoreci.com/blog/what-is-canary-deployment
https://semaphoreci.com/blog/blue-green-deployment
https://semaphoreci.com/blog/blue-green-deployment
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes

//semaphoreci.com/blog/guide-continuous-deployment-kubernetes
• JavaScript Monorepos with Lerna: https:// semaphoreci.com/blog/jav

ascript-monorepos-lerna
• Android Continuous Integration and Deployment Tutorial: https:// se

maphoreci.com/blog/android-continuous-integration-deployment
• Python Continuous Integration and Deployment From Scratch: https:

// semaphoreci.com/blog/python-continuous-integration-continuous-
delivery

4.4.2 Smoke Testing

Having a production-like environment presents an invaluable opportunity for
testing. Let’s take a look at how Semaphore enables smoke tests.

Create a new block and add the commands required to check that the service
is healthy. For example:

echo "Testing service $SVC"
curl "https://${SVC}.example.com"

4.4.3 Staging the Rest of the Services

Thanks to parametrization, our staging pipeline is universal. We can reuse it
to stage the Billing and UI services.

Create a new promotion below to “Stage users”. The criteria for releasing may
be different for each service. Let’s say that we want to deploy Billing only on
Git-tagged releases. Hence, the When? field should read:

46

https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/blog/javascript-monorepos-lerna
https://semaphoreci.com/blog/javascript-monorepos-lerna
https://semaphoreci.com/blog/android-continuous-integration-deployment
https://semaphoreci.com/blog/android-continuous-integration-deployment
https://semaphoreci.com/blog/python-continuous-integration-continuous-delivery
https://semaphoreci.com/blog/python-continuous-integration-continuous-delivery
https://semaphoreci.com/blog/python-continuous-integration-continuous-delivery

change_in('/service/billing') AND result = 'passed' and tag=~ '.*'

The parameter for this promotion will be almost exactly the same as Users,
the only difference is that the default value will be billing instead of users.

Click on the newly-created pipeline and open the YAML path section. Replace
the path of the file with .semaphore/stage.yml.

Repeat the same procedure with the UI Service:

1. Create a new promotion.
2. Type an auto-promotion condition.
3. Create a SVC parameter with a default value of ui.
4. Change the YAML path to .semaphore/stage.yml.

47

4.5 The Production Pipeline
If testing on staging passes, chances are that it’s pretty safe to continue with
production.

4.5.1 Promoting the Users Service to Production

We’ll keep things simple by creating a deployment pipeline with one job. The
rundown of the steps is:

1. Create a promotion branching off the staging pipeline, using the same
auto-promotion and parameters as before.

48

2. Ensure that users is the default value of the parametrized pipeline.

3. Rename the new pipeline to: .semaphore/deploy.yml

4. Type the deployment commands (the service to deploy is stored on the
SVC variable).

5. Activate any required secrets and set environment variables as needed.

Click on Run the Workflow to give it a whirl. You may need to manually start
the staging and deployment pipelines. Check that the Users service is deployed
to both environments.

4.5.2 Deploying the Billing and UI Services

The deploy to production pipeline can also be reused for the rest of the services.
So, repeat the procedure: add two additional promotions branching off the
stage pipeline and set the YAML pipeline file to .semaphore/deploy.yml.

At the end of the setup you will have a total of three pipelines (CI, staging,
and production deployment) connected by six promotions.

49

4.6 Ready to Go
The CI/CD process is 100% configured. The only thing left to do is save it
and run it to ensure everything works as expected.

The resulting workflow is too big to see all at once on one page. Still, you can
see the overview in the project’s dashboard.

The deployment is complete as soon as everything is green. Good job and
happy building!

50

5 Final Words
Nice work! The book may be finished, but there’s a lot more to learn and do
yet in the world of monorepos. So, go and build something awesome!

5.1 Share This Book With The World
Please share this book with your colleagues, friends, and anyone who you think
might benefit from it.

Share the book online: https:// semaphoreci.com/resources/monorepo-cicd

5.2 Tell Us What You Think
We would absolutely love to hear your feedback. What did you get out of
reading this book? How easy/hard was it to follow? Is there something that
you’d like to see in a new edition?

This book is open source and available at https://github.com/semaphoreci/b
ook-monorepo-cicd.

• Send comments and feedback, ask questions, and report problems by
opening a new issue.

• Contribute to the quality of this book by submitting pull requests for
improvements to explanations, code snippets, etc.

• Write to us privately at learn@semaphoreci.com.

5.3 About Semaphore
Semaphore https://semaphoreci.com helps developers continuously build, test
and deploy code at the push of a button. It provides the fastest, enterprise-grade
CI/CD pipelines as a serverless service. Trusted by thousands of organizations
around the globe, Semaphore can help your team move faster too.

51

https://semaphoreci.com/resources/monorepo-cicd
https://github.com/semaphoreci/book-monorepo-cicd
https://github.com/semaphoreci/book-monorepo-cicd
https://github.com/semaphoreci/book-monorepo-cicd/issues
mailto:learn@semaphoreci.com
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=monorepo-cicd

	Preface
	Who Is This Book for, and What Does It Cover?
	How to Contact Us
	About the Author
	About the Editor
	1 Introduction to Monorepos
	1.1 What Is a Monorepo?
	1.2 Monorepos vs. Multirepos
	1.3 What Monorepos Bring to the Table
	1.4 Technical Challenges
	1.5 It's Not (Only) about Technology
	1.6 Notable Monorepo Adopters
	1.7 Investing in Tooling
	1.8 Scaling up Repositories
	1.9 Best Practices for Monorepo Management

	2 Continuous Integration for Monorepos
	2.1 The Challenge of CI/CD with Monorepos
	2.2 Hello World Monorepo with Semaphore
	2.3 Change-Based Execution
	2.4 Using change_in to Speed up Pipelines
	2.5 How Semaphore Identifies Changes

	3 Continuous Integration Demo
	3.1 Monorepo Demo
	3.2 Setting up the Pipeline
	3.2.1 Billing Service
	3.2.2 Users Service
	3.2.3 UI Service

	3.3 Configuring Change Detection
	3.4 Tips for Using change_in

	4. Continuous Deployment for Monorepos
	4.1 Secrets
	4.2 Deploying with Promotions
	4.3 Parametrized Promotions
	4.4 Staging the Demo
	4.4.1 Staging the Users Service
	4.4.2 Smoke Testing
	4.4.3 Staging the Rest of the Services

	4.5 The Production Pipeline
	4.5.1 Promoting the Users Service to Production
	4.5.2 Deploying the Billing and UI Services

	4.6 Ready to Go

	5 Final Words
	5.1 Share This Book With The World
	5.2 Tell Us What You Think
	5.3 About Semaphore

