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Preface

To maximize the rate of learning, we must minimize the time to try things.

In software development, the cloud has been a critical factor in increasing the
speed of building innovative products.

Today there’s a massive change going on in the way we’re using the cloud. To
borrow the metaphor from Adrian Cockroft1, who led cloud architecture at
Netflix, we need to think of cloud resources not as long-lived and stable pets,
but as transitory and disposable cattle.

Doing so successfully, however, requires our applications to adapt. They need to
be disposable and horizontally scalable. They should have a minimal divergence
between development and production so that we can continuously deploy them
multiple times per day.

A new generation of tools has democratized the way of building such cloud
native software. Docker containers are now the standard way of packaging
software in a way that can be deployed, scaled, and dynamically distributed
on any cloud. And Kubernetes is the leading platform to run containers in
production. Over time new platforms with higher-order interfaces will emerge,
but it’s almost certain that they will be based on Kubernetes.

The great opportunity comes potentially at a high cost. Countless organizations
have spent many engineering months learning how to deliver their apps with
this new stack, making sense of disparate information from the web. Delaying
new features by months is not exactly the outcome any business wants when
engineers announce that they’re moving to new tools that are supposed to
make them more productive.

This is where this book comes into play, dear reader. Our goal is to help
you transition to delivering cloud native apps quickly. The fundamentals
don’t change: we still need a rock-solid delivery pipeline, which automatically
configures, builds, tests, and deploys code. This book shows you how to do
that in a cloud native way — so you can focus on building great products and
solutions.

1Currently VP Amazon Sustainability Architecture at Amazon
https://twitter.com/adrianco
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Who Is This Book For, and What Does It Cover?

The main goal of this book is to provide a practical roadmap for software
development teams who want to:

• Use Docker containers to package their code,
• Run it on Kubernetes, and
• Continuously deliver all changes.

We don’t spend much time explaining why you should, or should not use
container technologies to ship your applications. We also don’t provide a
general reference to using Docker and Kubernetes. When you encounter a
concept of Docker or Kubernetes that you’re not familiar with, we recommend
that you consult the official documentation.

We assume that you’re fairly new to the container technology stack and that
your goal is to establish a standardized and fully automated build, test, and
release process.

We believe that both technology leaders and individual contributors will benefit
from reading this book.

If you are a CTO or otherwise ultimately responsible for delivering working
software to customers, this book will provide you with a clear vision of what a
reliable CI/CD pipeline to Kubernetes looks like, and what it takes to build
one.

If you are a developer or systems administrator, besides understanding the big
picture, you will also find working code and configuration that you can reuse
in your projects.

Chapter 1, “Using Docker for Development and CI/CD”, outlines the key
benefits of using Docker and provides a detailed roadmap to adopting it.

Chapter 2, “Deploying to Kubernetes”, explains what you need to know about
Kubernetes deployments to deliver your containers to production.

Chapter 3, “Best Practices for Cloud Native Applications”, describes how both
our culture and tools related to software delivery need to change to fully benefit
from the agility that containers and cloud can offer.

Chapter 4, “A Complete CI/CD Pipeline”, is a step-by-step guide to imple-
menting a CI/CD pipeline with Semaphore that builds, tests, and deploys a
Dockerized microservice to Kubernetes.
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Changes in the Second Edition

A few changes were introduced in this second edition:

• Moved to Kubernetes version v1.20. All commands and actions were
tested with this version.

• Added comments about accessing services in local development Kuber-
netes clusters.

• Added mention of new CI/CD features in Semaphore: parameterized
pipelines, test results, code change detection.

• DigitalOcean deployment now uses their Private Container Registry
service instead of Docker Hub.

• Updated setup steps for DigitalOcean, Google Cloud, and AWS.
• Updated UI screenshots using higher resolution.
• Modified deployment tutorial to use parametrized promotions.
• Other minor fixes.

How to Contact Us

We would very much love to hear your feedback after reading this book. What
did you like and learn? What could be improved? Is there something we could
explain further?

A benefit of publishing an ebook is that we can continuously improve it. And
that’s exactly what we intend to do based on your feedback.

You can send us feedback by sending an email to learn@semaphoreci.com.

Find us on Twitter: https://twitter.com/semaphoreci

Find us on Facebook: https://facebook.com/SemaphoreCI

Find us on LinkedIn: https://www.linkedin.com/company/rendered-text

About the Authors

Marko Anastasov is a software engineer, author and entrepreneur. Marko
co-founded Rendered Text, a software company behind the Semaphore CI/CD
service. He worked on building and scaling Semaphore from an idea to a
cloud-based platform used by some of the world’s best engineering teams. He
writes about architectures, practices and tools that support continuous delivery
on semaphoreci.com/blog. Follow Marko on Twitter at @markoa.
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1 Using Docker for Development and CI/CD

In 2013, Solomon Hykes showed a demo of the first version of Docker during the
PyCon conference in Santa Clara2. Since then, the benefits of Docker containers
have spread to seemingly every corner of the software industry. While Docker
(the project and the company) made containers so popular, they were not the
first project to leverage containers out there; and they are definitely not the
last either.

Several years later, we can hopefully see beyond the hype as some powerful,
efficient patterns emerged to leverage containers to develop and ship better
software, faster.

In this chapter, you will first learn about the kind of benefits that you can
expect from implementing Docker containers.

Then, a realistic roadmap that any organization can follow realistically, to
attain these benefits.

1.1 Benefits of Using Docker

Containers will not instantly turn our monolithic, legacy applications into
distributed, scalable microservices.

Containers will not transform overnight all our software engineers into “DevOps
engineers”. Notably, because DevOps is not defined by our tools or skills, but
rather by a set of practices and cultural changes.

So what can containers do for us?

1.1.1 Set up Development Environments in Minutes

Using Docker and its companion tool Compose, you can run a complex app
locally, on any machine, in less than five minutes.

It sums up to:

$ git clone https://github.com/jpetazzo/dockercoins

$ cd dockercoins

$ docker-compose up

2The future of Linux Containers (2013), https://www.youtube.com/watch?v=wW9CA
H9nSLs
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Download the full ebook for free
We hope you have enjoyed this small sample of the ebook.

Download the the full ebook for free here:

https://semaphoreci.com/resources/cicd-docker-kubernetes
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