
CI/CD with Docker
and Kubernetes

Sample

CI/CD with Docker and Kubernetes
Second Edition — How to Deliver Cloud Native Applications at

High Velocity

Semaphore

1

Contents
Preface . 7
Who Is This Book For, and What Does It Cover? 8
Changes in the Second Edition . 9
How to Contact Us . 9
About the Authors . 9

1 Using Docker for Development and CI/CD 11
1.1 Benefits of Using Docker . 11

1.1.1 Set up Development Environments in Minutes 11
1.1.2 Deploy Easily in the Cloud or on Premises 12
1.1.3 Less Risky Releases . 13

1.2 A Roadmap to Adopting Docker 13
1.2.1 Choosing the First Project to Dockerize 14
1.2.2 Writing the First Dockerfile 14
1.2.3 Writing More Dockerfiles 15
1.2.4 Writing a Docker Compose File 16
1.2.5 A Standardized Development Environment 17
1.2.6 End-To-End Testing and QA 18
1.2.7 Continuous Deployment to Staging 18
1.2.8 Continuous Deployment to Production 19

1.3 Summary . 20

2 Deploying to Kubernetes 21
2.1 Containers and Pods . 22
2.2 Declarative vs Imperative Systems 23
2.3 Replica Sets Make Scaling Pods Easy 24
2.4 Deployments Drive Replica Sets 26

2.4.1 What Happens When You Change Configuration 26
2.5 Detecting Broken Deployments with Readiness Probes 27
2.6 Rollbacks for Quick Recovery from Bad Deploys 28
2.7 MaxSurge and MaxUnavailable 28
2.8 Quick Demo . 29
2.9 Selectors and Labels . 30

2.9.1 Services as Load Balancers 30
2.10 Advanced Kubernetes Deployment Strategies 31

2.10.1 Blue / Green Deployment 31
2.10.2 Canary Deployment . 33

2.11 Summary . 35

2

3 CI/CD Best Practices for Cloud-Native Applications 36
3.1 What Makes a Good CI/CD Pipeline 36

3.1.1 Speed . 36
3.1.2 Reliability . 37
3.1.3 Completeness . 37

3.2 General Principles . 38
3.2.1 Architect the System in a Way That Supports Iterative

Releases . 38
3.2.2 You Build It, You Run It 39
3.2.3 Use Ephemeral Resources 39
3.2.4 Automate Everything . 40

3.3 Continuous Integration Best Practices 40
3.3.1 Treat Master Build as If You’re Going to Make a Release

at Any Time . 40
3.3.2 Keep the Build Fast: Up to 10 Minutes 41
3.3.3 Build Only Once and Promote the Result Through the

Pipeline . 43
3.3.4 Run Fast and Fundamental Tests First 44
3.3.5 Minimize Feature Branches, Embrace Feature Flags . . . 46
3.3.6 Use CI to Maintain Your Code 47

3.4 Continuous Delivery Best Practices 48
3.4.1 The CI/CD Pipeline is the Only Way to Deploy to Production 48
3.4.2 Developers Can Deploy to Production-Like Staging Envi-

ronments at a Push of a Button 48
3.4.3 Always Use the Same Environment 49

4 Implementing a CI/CD Pipeline 50
4.1 Docker and Kubernetes Commands 50

4.1.1 Docker Commands . 50
4.1.2 Kubectl Commands . 51

4.2 Setting Up The Demo Project 51
4.2.1 Install Prerequisites . 51
4.2.2 Download The Git Repository 52
4.2.3 Running The Microservice Locally 52
4.2.4 Reviewing Kubernetes Manifests 54

4.3 Overview of the CI/CD Workflow 56
4.3.1 CI Pipeline: Building a Docker Image and Running Tests 56
4.3.2 CD Pipelines: Canary and Stable Deployments 57

4.4 Implementing a CI/CD Pipeline With Semaphore 59
4.4.1 Introduction to Semaphore 59

3

4.4.2 Creating a Semaphore Account 60
4.4.3 Creating a Semaphore Project For The Demo Repository 60
4.4.4 The Semaphore Workflow Builder 62
4.4.5 The Continuous Integration Pipeline 65
4.4.6 Your First Build . 69

4.5 Provisioning Kubernetes . 71
4.5.1 DigitalOcean Cluster . 71
4.5.2 Google Cloud Cluster . 72
4.5.3 AWS Cluster . 72

4.6 Provisioning a Database . 73
4.6.1 DigitalOcean Database 73
4.6.2 Google Cloud Database 74
4.6.3 AWS Database . 74
4.6.4 Creating the Database Secret on Semaphore 74

4.7 The Canary Pipeline . 75
4.7.1 Creating a Promotion and Deployment Pipeline 75

4.8 Your First Release . 81
4.8.1 The Stable Deployment Pipeline 81
4.8.2 Releasing the Canary . 83
4.8.3 Releasing the Stable . 84
4.8.4 The Rollback Pipeline 86
4.8.5 Troubleshooting and Tips 89

4.9 Summary . 90

5 Final Words 91
5.1 Share This Book With The World 91
5.2 Tell Us What You Think . 91
5.3 About Semaphore . 91

4

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https:
//creativecommons.org/licenses/by-nc-nd/4.0

This book is open source: https://github.com/semaphoreci/book-cicd-docker-
kubernetes

Published on the Semaphore website: https://semaphoreci.com

Sep 2022: Second edition v2.0 (revision 0d31865)

5

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/book-cicd-docker-kubernetes
https://github.com/semaphoreci/book-cicd-docker-kubernetes
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=cicd-docker-kubernetes-semaphore

Share this book:

I’ve just started reading “CI/CD with Docker and Kubernetes”, a
free ebook by @semaphoreci: https://bit.ly/3bJELLQ (Tweet this!)

6

https://ctt.ac/c5Ub9

Preface

To maximize the rate of learning, we must minimize the time to try things.

In software development, the cloud has been a critical factor in increasing the
speed of building innovative products.

Today there’s a massive change going on in the way we’re using the cloud. To
borrow the metaphor from Adrian Cockroft1, who led cloud architecture at
Netflix, we need to think of cloud resources not as long-lived and stable pets,
but as transitory and disposable cattle.

Doing so successfully, however, requires our applications to adapt. They need to
be disposable and horizontally scalable. They should have a minimal divergence
between development and production so that we can continuously deploy them
multiple times per day.

A new generation of tools has democratized the way of building such cloud
native software. Docker containers are now the standard way of packaging
software in a way that can be deployed, scaled, and dynamically distributed
on any cloud. And Kubernetes is the leading platform to run containers in
production. Over time new platforms with higher-order interfaces will emerge,
but it’s almost certain that they will be based on Kubernetes.

The great opportunity comes potentially at a high cost. Countless organizations
have spent many engineering months learning how to deliver their apps with
this new stack, making sense of disparate information from the web. Delaying
new features by months is not exactly the outcome any business wants when
engineers announce that they’re moving to new tools that are supposed to
make them more productive.

This is where this book comes into play, dear reader. Our goal is to help
you transition to delivering cloud native apps quickly. The fundamentals
don’t change: we still need a rock-solid delivery pipeline, which automatically
configures, builds, tests, and deploys code. This book shows you how to do
that in a cloud native way — so you can focus on building great products and
solutions.

1Currently VP Amazon Sustainability Architecture at Amazon
https://twitter.com/adrianco

7

Who Is This Book For, and What Does It Cover?

The main goal of this book is to provide a practical roadmap for software
development teams who want to:

• Use Docker containers to package their code,
• Run it on Kubernetes, and
• Continuously deliver all changes.

We don’t spend much time explaining why you should, or should not use
container technologies to ship your applications. We also don’t provide a
general reference to using Docker and Kubernetes. When you encounter a
concept of Docker or Kubernetes that you’re not familiar with, we recommend
that you consult the official documentation.

We assume that you’re fairly new to the container technology stack and that
your goal is to establish a standardized and fully automated build, test, and
release process.

We believe that both technology leaders and individual contributors will benefit
from reading this book.

If you are a CTO or otherwise ultimately responsible for delivering working
software to customers, this book will provide you with a clear vision of what a
reliable CI/CD pipeline to Kubernetes looks like, and what it takes to build
one.

If you are a developer or systems administrator, besides understanding the big
picture, you will also find working code and configuration that you can reuse
in your projects.

Chapter 1, “Using Docker for Development and CI/CD”, outlines the key
benefits of using Docker and provides a detailed roadmap to adopting it.

Chapter 2, “Deploying to Kubernetes”, explains what you need to know about
Kubernetes deployments to deliver your containers to production.

Chapter 3, “Best Practices for Cloud Native Applications”, describes how both
our culture and tools related to software delivery need to change to fully benefit
from the agility that containers and cloud can offer.

Chapter 4, “A Complete CI/CD Pipeline”, is a step-by-step guide to imple-
menting a CI/CD pipeline with Semaphore that builds, tests, and deploys a
Dockerized microservice to Kubernetes.

8

Changes in the Second Edition

A few changes were introduced in this second edition:

• Moved to Kubernetes version v1.20. All commands and actions were
tested with this version.

• Added comments about accessing services in local development Kuber-
netes clusters.

• Added mention of new CI/CD features in Semaphore: parameterized
pipelines, test results, code change detection.

• DigitalOcean deployment now uses their Private Container Registry
service instead of Docker Hub.

• Updated setup steps for DigitalOcean, Google Cloud, and AWS.
• Updated UI screenshots using higher resolution.
• Modified deployment tutorial to use parametrized promotions.
• Other minor fixes.

How to Contact Us

We would very much love to hear your feedback after reading this book. What
did you like and learn? What could be improved? Is there something we could
explain further?

A benefit of publishing an ebook is that we can continuously improve it. And
that’s exactly what we intend to do based on your feedback.

You can send us feedback by sending an email to learn@semaphoreci.com.

Find us on Twitter: https://twitter.com/semaphoreci

Find us on Facebook: https://facebook.com/SemaphoreCI

Find us on LinkedIn: https://www.linkedin.com/company/rendered-text

About the Authors

Marko Anastasov is a software engineer, author and entrepreneur. Marko
co-founded Rendered Text, a software company behind the Semaphore CI/CD
service. He worked on building and scaling Semaphore from an idea to a
cloud-based platform used by some of the world’s best engineering teams. He
writes about architectures, practices and tools that support continuous delivery
on semaphoreci.com/blog. Follow Marko on Twitter at @markoa.

9

mailto:learn@semaphoreci.com
https://twitter.com/semaphoreci
https://facebook.com/SemaphoreCI
https://www.linkedin.com/company/rendered-text
https://semaphoreci.com/blog/?utm_source=ebook&utm_medium=pdf&utm_campaign=cicd-docker-kubernetes-semaphore
https://twitter.com/markoa

Jérôme Petazzoni was part of the team that built, scaled, and operated the
dotCloud PAAS, before that company became Docker. He worked seven years
at the container startup, where he wore countless hats and ran containers in
production before it was cool. He loves to share what he knows, which led him
to give hundreds of talks and demos on containers, Docker, and Kubernetes.
He has trained thousands of people to deploy their apps in confidence on these
platforms, and continues to do so as an independent consultant. He values
diversity, and strives to be a good ally, or at least a decent social justice sidekick.
He also collects musical instruments and can arguably play the theme of Zelda
on a dozen of them. Follow Jérôme on Twitter at @jpetazzo.

Pablo Tomas Fernandez Zavalia is an electronic engineer and writer. He
started his career in developing for the City of Buenos Aires City Hall (bueno-
saires.gob.ar). After graduating, he joined British Telecom as head of the Web
Services department in Argentina. He then worked on IBM as a database
administrator, where he also did tutoring, DevOps, and cloud migrations. In
his free time he enjoys writing, sailing and board games. Follow Tomas on
Twitter at @tomfernblog.

10

https://twitter.com/jpetazzo
https://twitter.com/tomfernblog

1 Using Docker for Development and CI/CD

In 2013, Solomon Hykes showed a demo of the first version of Docker during the
PyCon conference in Santa Clara2. Since then, the benefits of Docker containers
have spread to seemingly every corner of the software industry. While Docker
(the project and the company) made containers so popular, they were not the
first project to leverage containers out there; and they are definitely not the
last either.

Several years later, we can hopefully see beyond the hype as some powerful,
efficient patterns emerged to leverage containers to develop and ship better
software, faster.

In this chapter, you will first learn about the kind of benefits that you can
expect from implementing Docker containers.

Then, a realistic roadmap that any organization can follow realistically, to
attain these benefits.

1.1 Benefits of Using Docker

Containers will not instantly turn our monolithic, legacy applications into
distributed, scalable microservices.

Containers will not transform overnight all our software engineers into “DevOps
engineers”. Notably, because DevOps is not defined by our tools or skills, but
rather by a set of practices and cultural changes.

So what can containers do for us?

1.1.1 Set up Development Environments in Minutes

Using Docker and its companion tool Compose, you can run a complex app
locally, on any machine, in less than five minutes.

It sums up to:

$ git clone https://github.com/jpetazzo/dockercoins

$ cd dockercoins

$ docker-compose up

2The future of Linux Containers (2013), https://www.youtube.com/watch?v=wW9CA
H9nSLs

11

https://docs.docker.com/compose/
https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.youtube.com/watch?v=wW9CAH9nSLs

Download the full ebook for free
We hope you have enjoyed this small sample of the ebook.

Download the the full ebook for free here:

https://semaphoreci.com/resources/cicd-docker-kubernetes

1

https://semaphoreci.com/resources/cicd-docker-kubernetes

	Preface
	Who Is This Book For, and What Does It Cover?
	Changes in the Second Edition
	How to Contact Us
	About the Authors
	1 Using Docker for Development and CI/CD
	1.1 Benefits of Using Docker
	1.1.1 Set up Development Environments in Minutes

	Download the full ebook for free

